100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
CS 7641 Hypothesis Quiz Questions and Answers|2025 Update|100% Correct $14.99
Add to cart

Exam (elaborations)

CS 7641 Hypothesis Quiz Questions and Answers|2025 Update|100% Correct

 0 purchase

CS 7641 Hypothesis Quiz Questions and Answers|2025 Update|100% Correct

Preview 2 out of 13  pages

  • March 1, 2025
  • 13
  • 2024/2025
  • Exam (elaborations)
  • Questions & answers
All documents for this subject (2)
avatar-seller
Wiseman
CS 7641 Hypothesis Quiz Questions and Answers|2025 Update|100% Correct


Hypothesis Quiz Selected Answers Summer 2025

CS7641: Machine Learning

Prepared by: Theodore J. LaGrow

Last Updated: 05/29/24



The following are curated answers generated by the Teaching Staff for the article, “Robust T-Loss for
Medical Image Segmentation” by Gonzalez-Jimenez et al. I have tried to highlight key details needed for
each question. These answers are examples in no particular order.



Question 1

Much like Rule 6 in Ten simple rules for structuring papers by Konrad Kording and Brett Mensh, what is
the gap the authors provide? Please provide 400 words or less.

 For this question, we are really looking for what the author’s claim for the gap as well as some
explanation for why this is the gap. For full completeness, you need to give explanation or
evidence.



Responses:

The training sets currently used for medical image segmentation are noisy and incorrectly labeled in
about 5% of the data. The gap that the author’s set out to resolve is developing a new deep learning
algorithm for medical image segmentation that is less sensitive to the quality of the training set
compared to previous methods which include Convolutional Neural Networks (CNNs) and Visual
Transformers (ViTs). In the authors’ opinion, the solution to this gap is using a modified version of
robust loss functions described in the paper, named T-Loss.

---

In this paper, the authors address a critical gap in the field of medical image segmentation,
specifically related to handling outliers and noisy labels. It sets up the context about medical image
segmentation and the significance of regions of interest being affected by noise of varied levels and
types. It also talks about traditional loss functions and their ability to handle outliers in a robust
manner, or the lack thereof. The proposed solution is the T-Loss, a novel loss function based on the
negative log-likelihood of the Student-t distribution. It is promised to be a simpler and more efficient
loss function which is then backed up using experimental results with the Dice scores as the metric
for segmentation accuracy. By addressing this gap, the authors contribute to improving the reliability
and accuracy of medical image segmentation models.

---

, Rule 6 of the “Ten Simple Rules” document addresses the paper’s purpose. More specifically,
communicating to the reader how the new technology solves an existing problem and why the
solution is important. The T-Loss paper outlines a common problem of using Convolutional Neural
Networks (CNNs) and Visual Transformers (ViTs) of obtaining large amounts of training data. In
medical imaging the data is costly due to labeling each pixel which requires human expertise. One
possible solution is to obtain labels through automated mining or crowd-sourcing methods. This
method produces data labels with a high level of noise. To correct the noisy labels several approaches
have been studied such as label correction, estimated noise transition matrix, and robust loss
function (the purpose of the paper). The robust loss function seems the most promising but is
understudied. This paper helps fill the gap of analyzing several traditional robust loss functions and a
new one, T-Loss. The paper does a good job of structuring research on robust loss by covering
previous loss solutions, introducing a new loss (T-Loss), clearly outlining the datasets and metrics
used the experiments to show results and discussing findings. The paper does fill the “gap” of adding
research of robust loss in medical imaging and lays out a clear blueprint to continue adding the body
of research on the topic.

---

The gap that the authors provide is the need for large amounts of annotated data when developing
state-of-the-art segmentation models. The authors say that "supervised training of CNNs and ViTs
requires large amounts of annotated data" and specifically for the medical domain, that "obtaining
these annotations can be affected by human bias and poor inter-annotator agreement". Additionally,
the authors claim that the quality of the collected datasets is difficult because there is a large amount
of noise induced in the data. All of these aforementioned reasons stated by the authors contribute to
the gap that the authors are trying to close with this paper.

---

Field gap: Large amount of annotated training data for medical image segmentation is hard to obtain
and the annotations can be affected by multiple reasons causing the data with high levels of noise.
Subfield gap: Robust loss function provides a simpler solution with a single modeling component.
Other approaches have limitations such as more hyper-parameters, or complex training procedures.
Gap within the subfield: Traditional robust loss functions are vulnerable to memorizing noisy labels.
Field gap: Large amount of annotated training data for medical image segmentation is hard to obtain
and the annotations can be affected by multiple reasons causing the data with high levels of noise.
Subfield gap: Robust loss function provides a simpler solution with a single modeling component.
Other approaches have limitations such as more hyper-parameters, or complex training procedures.
Gap within the subfield: Traditional robust loss functions are vulnerable to memorizing noisy labels.

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller Wiseman. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $14.99. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

69484 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 15 years now

Start selling
$14.99
  • (0)
Add to cart
Added