Hoofdstuk 7 ............................................................................................................................................... 4
§7.1 – Partieel integreren ..................................................................................................................................... 4
§7.2 – Goniometrische integralen ........................................................................................................................ 7
Extra: Staartdelingen ..................................................................................................................................... 11
§7.4 – Integreren van breuken met behulp van breuksplitsen ........................................................................... 12
§7.5 – Alles door elkaar ...................................................................................................................................... 18
§7.7 – Het benaderen van integralen................................................................................................................. 21
§7.8 – Oneigenlijke integralen ........................................................................................................................... 24
Hoofdstuk 8 ............................................................................................................................................. 30
§8.1 – Booglengte .............................................................................................................................................. 30
§8.2 – De oppervlakte van een omwentelingslichaam ...................................................................................... 32
§7.1 – PARTIEEL INTEGREREN
Elke regel in het differentiëren heeft een bijpassende regel in het integreren. Zo heeft de
substitutieregel in het integreren de kettingregel. De regel die past bij de productregel is partieel
integreren.
De productregel kennen we en die luidt: [𝑓 ∙ 𝑔]′ = 𝑓 ′ ∙ 𝑔 + 𝑓 ∙ 𝑔′
We kunnen dit herschrijven als:
(𝑓𝑔)′ = 𝑓 ′ 𝑔 + 𝑓𝑔′
𝑓𝑔′ = (𝑓𝑔)′ − 𝑓′𝑔
∫ 𝑓𝑔′ 𝑑𝑥 = ∫(𝑓𝑔)′ 𝑑𝑥 − ∫ 𝑓 ′ 𝑔 𝑑𝑥
∫ 𝑓𝑔′𝑑𝑥 = 𝑓𝑔 − ∫ 𝑓 ′ 𝑔 𝑑𝑥
∫ 𝑓𝑔′ 𝑑𝑥 = 𝑓𝑔 − ∫ 𝑓 ′ 𝑔 𝑑𝑥
Dit laatste noemen we de formule voor partieel integreren.
Calculus duidt dit aan met een andere notatie: ∫ 𝑢 𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣 𝑑𝑢. Daarin staat 𝑢 = 𝑓(𝑥) en 𝑣 =
𝑔(𝑥). De afgeleiden daarvan zijn dus 𝑑𝑢 = 𝑓 ′ (𝑥)𝑑𝑥 en 𝑑𝑣 = 𝑔′ (𝑥)𝑑𝑥. In deze samenvatting wordt de
eerste notatie aangehouden.
Voorbeeld 1:
∫ 𝑥 sin 𝑥 𝑑𝑥
Deze integraal bestaat uit een product van twee functies. We gaan dus partieel integreren. De vraag is
dan welke we kiezen voor 𝑓 en welke voor 𝑔′. Een algemene regel is dat je voor 𝑓 de functie kiest die
makkelijker wordt als je hem differentieert.
𝑓=𝑥 𝑔 = −cos 𝑥
′
𝑓 =1 𝑔′ = sin 𝑥
∫ 𝑥 sin 𝑥 𝑑𝑥 = 𝑥 ∙ (− cos 𝑥) − ∫ 1 ∙ (− cos 𝑥)𝑑𝑥
= −𝑥 cos 𝑥 + ∫ cos 𝑥 𝑑𝑥
= −𝑥 cos 𝑥 + sin 𝑥 + 𝐶
Voorbeeld 1.a:
∫ 𝑥 cos 𝑥 𝑑𝑥
𝑓=𝑥 𝑔 = sin 𝑥
𝑓′ = 1 𝑔′ = cos 𝑥
∫ 𝑥 cos 𝑥 𝑑𝑥 = 𝑥 sin 𝑥 − ∫ 1 ∙ sin 𝑥 𝑑𝑥
= 𝑥 sin 𝑥 − − cos 𝑥 + 𝐶
= 𝑥 sin 𝑥 + cos 𝑥 + 𝐶
We kunnen ons antwoord altijd controleren door het opnieuw te differentiëren. Als we dan uitkomen
op hetgeen waar we mee begonnen, dan is het integreren goed gegaan.
Het doel van partieel integreren is om een gemakkelijkere integraal te krijgen dan degene waar we
mee begonnen. Dat is dus ook waarom we de functie voor 𝑓 kiezen die makkelijker wordt met
differentiëren. Achter het integraal-teken komt deze namelijk terug: ∫ 𝑓 ′ 𝑔 𝑑𝑥. Dan is het fijn als 𝑓 ′
iets makkelijks is. Dit geldt zo lang 𝑔′ gemakkelijk geïntegreerd kan worden naar 𝑔.
4
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller cdenhollander. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $3.25. You're not tied to anything after your purchase.