100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Samenvatting Integreren 2 - Calculus H7 & H8 $3.25   Add to cart

Summary

Samenvatting Integreren 2 - Calculus H7 & H8

1 review
 44 views  1 purchase
  • Course
  • Institution

In deze samenvatting vind je alle belangrijke stof voor het tentamen van Integreren 2, gebaseerd op Calculus en alle colleges.

Last document update: 3 year ago

Preview 4 out of 33  pages

  • January 24, 2021
  • March 5, 2021
  • 33
  • 2020/2021
  • Summary

1  review

review-writer-avatar

By: janouklandman • 3 year ago

avatar-seller
INTEGREREN 2 (CALCULUS)




Hoofdstuk 7: §7.1, §7.2, §7.4, §7.5, §7.7 en §7.8
Hoofdstuk 8: §8.1 en §8.2

, INHOUDSOPGAVE
Algemene herhaling integreren/differentiëren ............................................................................................... 3

Hoofdstuk 7 ............................................................................................................................................... 4
§7.1 – Partieel integreren ..................................................................................................................................... 4
§7.2 – Goniometrische integralen ........................................................................................................................ 7
Extra: Staartdelingen ..................................................................................................................................... 11
§7.4 – Integreren van breuken met behulp van breuksplitsen ........................................................................... 12
§7.5 – Alles door elkaar ...................................................................................................................................... 18
§7.7 – Het benaderen van integralen................................................................................................................. 21
§7.8 – Oneigenlijke integralen ........................................................................................................................... 24

Hoofdstuk 8 ............................................................................................................................................. 30
§8.1 – Booglengte .............................................................................................................................................. 30
§8.2 – De oppervlakte van een omwentelingslichaam ...................................................................................... 32




2

, ALGEMENE HERHALING INTEGREREN/DIFFERENTIËREN
Goniometrie:
𝒔𝒊𝒏𝒙
x cosx (x-as) sinx (y-as) tanx =
𝒄𝒐𝒔𝒙

0 1 0 0
1 1 1 1
𝜋 √3 √3
6 2 2 3
1 1 1
𝜋 √2 √2 1
4 2 2
1 1 1
𝜋 √3 √3
3 2 2
1
𝜋 0 1 Niet gedefinieerd
2

Herhaling van afgeleiden en primitieven:
𝒇(𝒙) ⟹ 𝑭(𝒙)
𝒇(𝒙) ⟹ 𝒇′(𝒙) waarbij F(X) de primitieve van f(x) is.
𝑥 𝑛+1 1
𝑥𝑛 𝑛∙ 𝑥 𝑛−1 𝑥𝑛 = ∙ 𝑥 𝑛+1
𝑛+1 𝑛+1
mits 𝑛 ≠ −1
1 1 1 1
− −
𝑥 𝑥2 𝑥2 𝑥
sin 𝑥 cos 𝑥 sin 𝑥 −cos 𝑥
cos 𝑥 −sin 𝑥 cos 𝑥 sin 𝑥
1 1
tan 𝑥 tan 𝑥
cos2 𝑥 cos2 𝑥
𝑒𝑥 𝑒𝑥 𝑒𝑥 𝑒𝑥
𝑎𝑥
𝑎𝑥 ln 𝑎 ∙ 𝑎 𝑥 𝑎𝑥
ln 𝑎
1 1
ln |𝑥| ln |𝑥|
𝑥 𝑥
1 1
sin−1 𝑥 = arcsin 𝑥 sin−1 𝑥 = arcsin 𝑥
√1 − 𝑥2 √1 − 𝑥2
𝑥 1 1 𝑥
sin−1 ( ) sin−1 ( )
𝑎 √𝑎 2 − 𝑥 2 √𝑎 2 − 𝑥 2 𝑎
1 1
𝑡𝑎𝑛−1 𝑥 = arctan 𝑥 𝑡𝑎𝑛−1 𝑥 = arctan 𝑥
1 + 𝑥2 1 + 𝑥2
𝑥 𝑎 𝑎 𝑥
𝑡𝑎𝑛−1 ( ) 𝑡𝑎𝑛−1 ( )
𝑎 𝑎 + 𝑥2
2 2
𝑎 +𝑥 2 𝑎
𝒇(𝒙) ⟹ 𝒇′(𝒙) 𝒇(𝒙) ⟹ 𝑭(𝒙)
Kettingregel: Substitutieregel:
ℎ(𝑥) = 𝑓(𝑔(𝑥)) ∫ 𝑓 ′ (𝑔(𝑥)) ∙ 𝑔(𝑥)𝑑𝑥
ℎ′ (𝑥) = 𝑓 ′ (𝑔(𝑥)) ∙ 𝑔(𝑥) = ∫ 𝑓(𝑢)𝑑𝑢
Productregel: Partieel integreren:
ℎ(𝑥) = 𝑓(𝑥) ∙ 𝑔(𝑥) ∫ 𝑓 ′ 𝑔 + 𝑓𝑔′ 𝑑𝑥 = 𝑓𝑔
ℎ′(𝑥) = 𝑓 ′ (𝑥) ∙ 𝑔(𝑥) + 𝑓(𝑥) ∙ 𝑔′(𝑥) ∫ 𝑓 ′ 𝑔𝑑𝑥 + ∫ 𝑓𝑔′𝑑𝑥 = 𝑓𝑔
[𝑓 ∙ 𝑔]′ = 𝑓 ′ 𝑔 + 𝑓𝑔′ ∫ 𝑓𝑔′ 𝑑𝑥 = 𝑓𝑔 − ∫ 𝑓 ′ 𝑔𝑑𝑥




3

, HOOFDSTUK 7

§7.1 – PARTIEEL INTEGREREN
Elke regel in het differentiëren heeft een bijpassende regel in het integreren. Zo heeft de
substitutieregel in het integreren de kettingregel. De regel die past bij de productregel is partieel
integreren.

De productregel kennen we en die luidt: [𝑓 ∙ 𝑔]′ = 𝑓 ′ ∙ 𝑔 + 𝑓 ∙ 𝑔′
We kunnen dit herschrijven als:
(𝑓𝑔)′ = 𝑓 ′ 𝑔 + 𝑓𝑔′
𝑓𝑔′ = (𝑓𝑔)′ − 𝑓′𝑔
∫ 𝑓𝑔′ 𝑑𝑥 = ∫(𝑓𝑔)′ 𝑑𝑥 − ∫ 𝑓 ′ 𝑔 𝑑𝑥
∫ 𝑓𝑔′𝑑𝑥 = 𝑓𝑔 − ∫ 𝑓 ′ 𝑔 𝑑𝑥
∫ 𝑓𝑔′ 𝑑𝑥 = 𝑓𝑔 − ∫ 𝑓 ′ 𝑔 𝑑𝑥
Dit laatste noemen we de formule voor partieel integreren.

Calculus duidt dit aan met een andere notatie: ∫ 𝑢 𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣 𝑑𝑢. Daarin staat 𝑢 = 𝑓(𝑥) en 𝑣 =
𝑔(𝑥). De afgeleiden daarvan zijn dus 𝑑𝑢 = 𝑓 ′ (𝑥)𝑑𝑥 en 𝑑𝑣 = 𝑔′ (𝑥)𝑑𝑥. In deze samenvatting wordt de
eerste notatie aangehouden.

Voorbeeld 1:
∫ 𝑥 sin 𝑥 𝑑𝑥
Deze integraal bestaat uit een product van twee functies. We gaan dus partieel integreren. De vraag is
dan welke we kiezen voor 𝑓 en welke voor 𝑔′. Een algemene regel is dat je voor 𝑓 de functie kiest die
makkelijker wordt als je hem differentieert.
𝑓=𝑥 𝑔 = −cos 𝑥

𝑓 =1 𝑔′ = sin 𝑥
∫ 𝑥 sin 𝑥 𝑑𝑥 = 𝑥 ∙ (− cos 𝑥) − ∫ 1 ∙ (− cos 𝑥)𝑑𝑥
= −𝑥 cos 𝑥 + ∫ cos 𝑥 𝑑𝑥
= −𝑥 cos 𝑥 + sin 𝑥 + 𝐶

Voorbeeld 1.a:
∫ 𝑥 cos 𝑥 𝑑𝑥

𝑓=𝑥 𝑔 = sin 𝑥
𝑓′ = 1 𝑔′ = cos 𝑥
∫ 𝑥 cos 𝑥 𝑑𝑥 = 𝑥 sin 𝑥 − ∫ 1 ∙ sin 𝑥 𝑑𝑥
= 𝑥 sin 𝑥 − − cos 𝑥 + 𝐶
= 𝑥 sin 𝑥 + cos 𝑥 + 𝐶

We kunnen ons antwoord altijd controleren door het opnieuw te differentiëren. Als we dan uitkomen
op hetgeen waar we mee begonnen, dan is het integreren goed gegaan.

Het doel van partieel integreren is om een gemakkelijkere integraal te krijgen dan degene waar we
mee begonnen. Dat is dus ook waarom we de functie voor 𝑓 kiezen die makkelijker wordt met
differentiëren. Achter het integraal-teken komt deze namelijk terug: ∫ 𝑓 ′ 𝑔 𝑑𝑥. Dan is het fijn als 𝑓 ′
iets makkelijks is. Dit geldt zo lang 𝑔′ gemakkelijk geïntegreerd kan worden naar 𝑔.




4

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller cdenhollander. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $3.25. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

79223 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$3.25  1x  sold
  • (1)
  Add to cart