100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Ejercicios resueltos de series de Fourier. $9.49   Add to cart

Case

Ejercicios resueltos de series de Fourier.

 68 views  0 purchase
  • Course
  • Institution

Ejercicios resueltos de series de Fourier.

Preview 2 out of 5  pages

  • February 16, 2021
  • 5
  • 2020/2021
  • Case
  • Espiritu
  • A+
avatar-seller
Series de Fourier.

El producto interno es un número real el cual se denota por < 𝑓, 𝑔 >= 𝑓1 𝑔1 + 𝑓2 𝑔2 + 𝑓3 𝑔3 + ⋯ + 𝑓𝑛 𝑔𝑛 .
Si 𝑓1 y 𝑓2 son dos funciones escalares, definidas en un intervalo [𝑎; 𝑏], entonces:
𝑏
< 𝑓1 , 𝑓2 >= ∫𝑎 𝑓1 (𝑥)𝑓2 (𝑥)𝑑𝑥, es la definición de producto interno.

𝑏
Una función ortogonal es definida como < 𝑓1 , 𝑓2 >= 0, esto es ∫𝑎 𝑓1 (𝑥)𝑓2 (𝑥)𝑑𝑥 = 0.
Ejemplo Si 𝑓1 (𝑥) = 𝑥 4 y 𝑓2 (𝑥) = 𝑥 5 determine si las funciones son ortogonales en el intervalo [-2;2].
2
2 2 𝑥 10 210 (−2)10
< 𝑓1 , 𝑓2 >= ∫−2 𝑥 4 𝑥 5 𝑑𝑥 ; < 𝑓1 , 𝑓2 >= ∫−2 𝑥 9 𝑑𝑥; < 𝑓1 , 𝑓2 >= [ ] ; < 𝑓1 , 𝑓2 >= [ − ] =0
10 −2 10 10
Ejemplo Si 𝑓1 (𝑥) = 𝑥 2 y 𝑓2 (𝑥) = 𝑥 4 determine si las funciones son ortogonales en el intervalo [-2;2].
2
2 2 𝑥7 27 (−2)7 28
< 𝑓1 , 𝑓2 >= ∫−2 𝑥 2 𝑥 4 𝑑𝑥 ; < 𝑓1 , 𝑓2 >= ∫−2 𝑥 6 𝑑𝑥; < 𝑓1 , 𝑓2 >= [ ] ; < 𝑓1 , 𝑓2 >= [ − ] =
7 −2 7 7 7
Conjuntos ortogonales. Si 𝑎 = {𝑓0 , 𝑓1 , 𝑓3 (𝑥), … , 𝑓𝑛 (𝑥)} es ortogonal en el intervalo [𝑎; 𝑏]
𝑏
si < 𝑓𝑚 , 𝑓𝑛 >= ∫𝑎 𝑓𝑚 (𝑥)𝑓𝑛 (𝑥)𝑑𝑥 = 0;

Ejemplo Dado el conjunto 𝐵 = {1, cos(𝑥) , cos(2𝑥) , cos(3𝑥) , … cos(𝑚𝑥) , … , cos(𝑛𝑥)},
pruebe que es ortogonal en el intervalo [−𝜋; 𝜋]
Respuesta:

𝜋
a) para 𝑓1 (𝑥) = 1 y 𝑓𝑛 (𝑥) = cos (𝑛𝑥) entonces < 𝑓1 , 𝑓𝑛 >= ∫−𝜋(1)(cos (𝑛𝑥))𝑑𝑥;
1 1
< 𝑓1 , 𝑓𝑛 >= [𝑠𝑒𝑛(𝑛𝑥)]𝜋−𝜋 ; < 𝑓1 , 𝑓𝑛 >= [𝑠𝑒𝑛(𝑛𝜋) − 𝑠𝑒𝑛(−𝑛𝜋)] ;
𝑛 𝑛
nota: 𝑠𝑒𝑛(−𝜃) = −𝑠𝑒𝑛(𝜃)
1
< 𝑓1 , 𝑓𝑛 >= [2𝑠𝑒𝑛(𝑛𝜋)] como 𝑠𝑒𝑛(𝑛𝜋) = 0 ∴ < 𝑓1 , 𝑓𝑛 >= 0 son ortogonales.
𝑛

𝜋
b) para 𝑓1 (𝑥) = 1 y 𝑓𝑛 (𝑥) = sen(𝑛𝑥) entonces < 𝑓1 , 𝑓𝑛 >= ∫−𝜋(1)(sen (𝑛𝑥))𝑑𝑥;
−1 −1
< 𝑓1 , 𝑓𝑛 >= [𝑐𝑜𝑠(𝑛𝑥)]𝜋−𝜋 ; < 𝑓1 , 𝑓𝑛 >= [𝑐𝑜𝑠(𝑛𝜋) − 𝑐𝑜𝑠(−𝑛𝜋)]
𝑛 𝑛
nota: cos(−𝜃) = cos (𝜃)
−1
< 𝑓1 , 𝑓𝑛 >= [0] ∴ < 𝑓1 , 𝑓𝑛 >= 0 son ortogonales.
𝑛




c) Para 𝑚 ≠ 𝑛 𝑓𝑚 (𝑥) = cos (𝑚𝑥) y 𝑓𝑛 (𝑥) = cos (𝑛𝑥) entonces
𝜋
< 𝑓𝑚 , 𝑓𝑛 >= ∫−𝜋(cos (𝑚𝑥))(cos (𝑛𝑥))𝑑𝑥; empleando identidades trigonométricas.
𝜋 1
< 𝑓𝑚 , 𝑓𝑛 >= ∫−𝜋 (cos ((𝑚 + 𝑛)𝑥)) + (cos ((𝑚 − 𝑛)𝑥))𝑑𝑥
2
1
Nota: cos(𝐴𝑥) cos(𝐵𝑥) = 2 [𝑐𝑜𝑠((𝐴 + 𝐵)𝑥) + cos ((𝐴 − 𝐵)𝑥)]
1 𝜋 1 𝜋
< 𝑓𝑚 , 𝑓𝑛 >= 2(𝑚+𝑛) ∫−𝜋(𝑚 + 𝑛)cos ((𝑚 + 𝑛)𝑥) 𝑑𝑥 +2(𝑚−𝑛) ∫−𝜋(𝑚 − 𝑛) cos((𝑚 − 𝑛)𝑥) 𝑑𝑥
1 1
< 𝑓𝑚 , 𝑓𝑛 >= 𝑠𝑒𝑛((𝑚 + 𝑛)𝑥) + 𝑠𝑒𝑛((𝑚 − 𝑛)𝑥) ∴ < 𝑓𝑚 , 𝑓𝑛 >= 0 son ortogonales
2(𝑚+𝑛) 2(𝑚−𝑛)


d) Para 𝑚 ≠ 𝑛 𝑓𝑚 (𝑥) = sen (𝑚𝑥) y 𝑓𝑛 (𝑥) = sen (𝑛𝑥) entonces
𝜋
< 𝑓𝑚 , 𝑓𝑛 >= ∫−𝜋(sen(𝑚𝑥))(sen (𝑛𝑥))𝑑𝑥; empleando identidades trigonométricas.
𝜋 1
< 𝑓𝑚 , 𝑓𝑛 >= ∫−𝜋 2 (cos ((𝑚 + 𝑛)𝑥)) + (cos ((𝑚 − 𝑛)𝑥))𝑑𝑥
1
Nota: sen(𝐴𝑥) sen(𝐵𝑥) = 2 [𝑐𝑜𝑠((𝐴 − 𝐵)𝑥) − cos ((𝐴 + 𝐵)𝑥)]
1 𝜋 1 𝜋
< 𝑓𝑚 , 𝑓𝑛 >= 2(𝑚−𝑛) ∫−𝜋(𝑚 − 𝑛)cos ((𝑚 − 𝑛)𝑥) 𝑑𝑥 − 2(𝑚+𝑛) ∫−𝜋(𝑚 + 𝑛) cos((𝑚 + 𝑛)𝑥) 𝑑𝑥

, 1 1
< 𝑓𝑚 , 𝑓𝑛 >= 2(𝑚−𝑛) 𝑐𝑜𝑠((𝑚 − 𝑛)𝑥) − 2(𝑚+𝑛) 𝑐𝑜𝑠((𝑚 + 𝑛)𝑥) ∴ < 𝑓𝑚 , 𝑓𝑛 >= 0 son ortogonales

e) Para 𝑚 ≠ 𝑛 𝑓𝑚 (𝑥) = sen (𝑚𝑥) y 𝑓𝑛 (𝑥) = cos (𝑛𝑥) entonces
𝜋
< 𝑓𝑚 , 𝑓𝑛 >= ∫−𝜋(sen(𝑚𝑥))(cos (𝑛𝑥))𝑑𝑥; empleando identidades trigonométricas.
𝜋 1
< 𝑓𝑚 , 𝑓𝑛 >= ∫−𝜋 (cos ((𝑚 + 𝑛)𝑥)) + (cos ((𝑚 − 𝑛)𝑥))𝑑𝑥
2
1
Nota: sen(𝐴𝑥) cos(𝐵𝑥) = 2 [𝑠𝑒𝑛((𝐴 − 𝐵)𝑥) − sen ((𝐴 + 𝐵)𝑥)]
1 𝜋 1 𝜋
< 𝑓𝑚 , 𝑓𝑛 >= 2(𝑚−𝑛) ∫−𝜋(𝑚 − 𝑛)sen ((𝑚 − 𝑛)𝑥) 𝑑𝑥 − 2(𝑚+𝑛) ∫−𝜋(𝑚 + 𝑛) sen((𝑚 + 𝑛)𝑥) 𝑑𝑥
−1 𝜋 1
< 𝑓𝑚 , 𝑓𝑛 >= 2(𝑚−𝑛) [𝑐𝑜𝑠((𝑚 − 𝑛)𝑥)]−𝜋 + 2(𝑚+𝑛) [𝑐𝑜𝑠((𝑚 + 𝑛)𝑥)]𝜋−𝜋
−1 1
< 𝑓𝑚 , 𝑓𝑛 >= 2(𝑚−𝑛) (𝑐𝑜𝑠((𝑚 − 𝑛)𝜋 − cos (𝑚 − 𝑛)(−𝜋)) + 2(𝑚+𝑛) (𝑐𝑜𝑠((𝑚 + 𝑛)𝜋 − cos(𝑚 + 𝑛) (−𝜋))
Nota: cos(−𝜃) = cos (𝜃) ∴ < 𝑓𝑚 , 𝑓𝑛 >= 0 son

f) Para 𝑚 = 𝑛 𝑓𝑛 (𝑥) = cos (𝑛𝑥) y 𝑓𝑛 (𝑥) = cos (𝑛𝑥) entonces :
𝜋 1 𝜋
< 𝑓𝑛 , 𝑓𝑛 ≥ ∫−𝜋 𝑐𝑜𝑠 2 (𝑛𝑥)𝑑𝑥; < 𝑓𝑛 , 𝑓𝑛 >= ∫−𝜋(1 + cos(2𝑛𝑥))𝑑𝑥
2
1 𝜋 1 𝜋 1 1
< 𝑓𝑛 , 𝑓𝑛 >= 2 ∫−𝜋 𝑑𝑥 + 4𝑛 ∫−𝜋 2ncos (2𝑛𝑥)𝑑𝑥 ; < 𝑓𝑛 , 𝑓𝑛 >= 2 [𝑥]𝜋−𝜋 + 4𝑛 [𝑠𝑒𝑛(2𝑛𝑥)]𝜋−𝜋
1 1
< 𝑓𝑛 , 𝑓𝑛 >= 2 (𝜋 − (−𝜋)) + 4𝑛 (𝑠𝑒𝑛(2𝑛𝜋) − 𝑠𝑒𝑛(2𝑛(−𝜋))
1
< 𝑓𝑛 , 𝑓𝑛 >= 𝜋 + 𝑠𝑒𝑛(2𝑛𝜋) = 𝜋.
2𝑛


g) Para 𝑚 = 𝑛 𝑓𝑛 (𝑥) = sen (𝑛𝑥) y 𝑓𝑛 (𝑥) = sen (𝑛𝑥) entonces :
𝜋 1 𝜋
< 𝑓𝑛 , 𝑓𝑛 ≥ ∫−𝜋 𝑠𝑒𝑛2 (𝑛𝑥)𝑑𝑥; < 𝑓𝑛 , 𝑓𝑛 >= 2 ∫−𝜋(1 − cos(2𝑛𝑥))𝑑𝑥
1 𝜋 −1 𝜋 −1 1
< 𝑓𝑛 , 𝑓𝑛 >= ∫−𝜋 𝑑𝑥 + ∫−𝜋 −2n ∙ sen (2𝑛𝑥)𝑑𝑥 ; < 𝑓𝑛 , 𝑓𝑛 >= [𝑥]𝜋−𝜋 + [𝑐𝑜𝑠(2𝑛𝑥)]𝜋−𝜋
2 4𝑛 2 4𝑛
1 1
< 𝑓𝑛 , 𝑓𝑛 >= (𝜋 − (−𝜋)) + (𝑐𝑜𝑠(2𝑛𝜋) − 𝑐𝑜𝑠(2𝑛(−𝜋))
2 4𝑛
Nota: cos(−𝜃) = cos (𝜃)
1
< 𝑓𝑛 , 𝑓𝑛 >= 𝜋 + 4𝑛 (0) = 𝜋.



Si consideramos la sucesión de funciones {𝑓0 (𝑥), 𝑓1 (𝑥), 𝑓2 (𝑥), … , 𝑓𝑛 (𝑥)} es un
conjunto ortogonal, tal que entonces se puede desarrollar formalmente la función 𝑓,
como como una serie ortogonal: 𝑓(𝑥) = 𝐶0 𝑓0 + 𝐶1 𝑓1 + 𝐶2 𝑓2 + ⋯ + 𝐶𝑛 𝑓𝑛 , donde
𝐶0 , 𝐶1 , 𝐶2 , … + 𝐶𝑛 se encuentran utilizando el concepto del producto interno.

Fourier propone inicialmente la sucesión de funciones siguiente:
𝜋𝑥 2𝜋𝑥 3𝜋𝑥 𝑛𝜋𝑥 𝜋𝑥 2𝜋𝑥 3𝜋𝑥 𝑛𝜋𝑥
{1, cos ( 𝑝 ) , cos ( 𝑝
) , cos ( 𝑝 ) , … cos ( 𝑝 ) , … 𝑠𝑒𝑛 ( 𝑝 ) , 𝑠𝑒𝑛 ( 𝑝 ) , 𝑠𝑒𝑛 ( 𝑝 ) , … , 𝑠𝑒𝑛 ( 𝑝 )}
Para conformar una serie tal que
𝑎0 𝑛𝜋 𝑛𝜋
𝑓(𝑥) = 2
+ ∑∞ ∞
𝑛=1 𝑎𝑛 cos ( 𝑝 𝑥) + ∑𝑛=1 𝑏𝑛 𝑠𝑒𝑛( 𝑝 𝑥) de esta serie es necesario conocer los coeficientes

𝑎0 , 𝑎1 , 𝑎2 , … , 𝑎𝑛 y 𝑏1 , 𝑏2 , 𝑏3, … , 𝑏𝑛

El procedimiento para conocer la primera constante 𝑎0 es:
𝑎0 𝑛𝜋 𝑛𝜋
𝑓(𝑥) = 2
+ ∑∞
𝑛=1(𝑎𝑛 cos ( 𝑝 𝑥) + 𝑏𝑛 𝑠𝑒𝑛( 𝑝 𝑥))
𝑝 𝑝 𝑎0 𝑝 𝑛𝜋 𝑝 𝑛𝜋
∫−𝑝 𝑓(𝑥)𝑑𝑥 = ∫−𝑝 2
𝑑𝑥 + ∑∞
𝑛=1 ∫−𝑝 𝑎𝑛 cos ( 𝑝 𝑥)𝑑𝑥 + ∫−𝑝 𝑏𝑛 𝑠𝑒𝑛 ( 𝑝 𝑥) 𝑑𝑥

De acuerdo con los incisos a) y b) de las funciones ortogonales las integrales
𝑝 𝑛𝜋 𝑝 𝑛𝜋
∫−𝑝 𝑎𝑛 cos ( 𝑝 𝑥)𝑑𝑥 = 0 y ∫−𝑝 𝑏𝑛 𝑠𝑒𝑛 ( 𝑝 𝑥) 𝑑𝑥 = 0,

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller jocelynmarcial30. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $9.49. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

76462 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$9.49
  • (0)
  Add to cart