100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Ejercicios del método de variación de parámetros. $9.49   Add to cart

Case

Ejercicios del método de variación de parámetros.

 88 views  0 purchase
  • Course
  • Institution

Ejercicios del método de variación de parámetros.

Preview 2 out of 6  pages

  • February 16, 2021
  • 6
  • 2020/2021
  • Case
  • Espiritu
  • A+
avatar-seller
Método de variación de parámetros.

El método de variación de parámetros permite resolver ecuaciones diferenciales de segundo orden, lineales, con
coeficientes constantes, no homogéneas, la cual tiene la forma:
𝑑2 𝑦 𝑑𝑦
𝑎2 (𝑥) 𝑑𝑥 2 + 𝑎1 (𝑥) 𝑑𝑥 + 𝑎0 (𝑥)𝑦 = 𝑓(𝑥) la que puede escribir en la forma característica como

𝑑2 𝑦 𝑎 (𝑥) 𝑑𝑦 𝑎 (𝑥) 𝑑2 𝑦 𝑑𝑦
𝑑𝑥 2
+ 𝑎1 (𝑥) 𝑑𝑥 + 𝑎0 (𝑥) 𝑦 = 𝑓(𝑥) o 𝑑𝑥 2
+ 𝑃(𝑥) 𝑑𝑥 + 𝑄(𝑥)𝑦 = 𝑓(𝑥) para coeficientes variables
2 2

𝑑2 𝑦 𝑑𝑦
𝑑𝑥 2
+ 𝑃(𝑥) 𝑑𝑥 + 𝑄(𝑥)𝑦 = 0 para la homogénea

En general la solución de la ecuación diferencial está dada por la suma de la solución de la homogénea más la solución
particular, 𝑦 = 𝑦𝐻 + 𝑦𝑃

La solución de la parte homogénea se obtiene por los procedimientos anteriormente tratados.

Para la solución particular partiremos de proponer que:

𝑦𝑝 = 𝑢1 𝑦1 + 𝑢2 𝑦2

𝑦𝑃′ = 𝑢1 𝑦1′ + 𝑢1′ 𝑦1 + 𝑢2 𝑦2′ + 𝑢2′ 𝑦2
𝑦𝑃′′ = 𝑢1 𝑦1′′ + 𝑦1′ 𝑢1′ + 𝑢1′ 𝑦1′ + 𝑢1′′ 𝑦1 + 𝑢2 𝑦2′′ + 𝑦2′ 𝑢2′ + 𝑢2′ 𝑦2′ + 𝑢2′′ 𝑦2
𝑢1 𝑦1′′ + 𝑦1′ 𝑢1′ + 𝑢1′ 𝑦1′ + 𝑢1′′ 𝑦1 + 𝑢2 𝑦2′′ + 𝑦2′ 𝑢2′ + 𝑢2′ 𝑦2′ + 𝑢2′′ 𝑦2 + 𝑃(𝑥)(𝑢1 𝑦1′ + 𝑢1′ 𝑦1 + 𝑢2 𝑦2′ + 𝑢2′ 𝑦2 ) + 𝑄(𝑥)(𝑢1 𝑦1 + 𝑢2 𝑦2 ) = 𝑓(𝑥)
𝑢1 (𝑦1′′ + 𝑃(𝑥)𝑦1′ + 𝑄(𝑥)𝑦1 ) +𝑢2 (𝑦2′′ + 𝑃(𝑥)𝑦2′ + 𝑄(𝑥)𝑦2 ) + 𝑦1′ 𝑢1′ + 𝑢1′ 𝑦1′ + 𝑢1′′ 𝑦1 + 𝑦2′ 𝑢2′ + 𝑢2′ 𝑦2′ + 𝑢2′′ 𝑦2 + 𝑃(𝑥)(𝑢1′ 𝑦1 + 𝑢2′ 𝑦2 ) = 𝑓(𝑥)

Si 𝑦1′′ + 𝑃(𝑥)𝑦1′ + 𝑄(𝑥)𝑦1 = 0 y 𝑦2′′ + 𝑃(𝑥)𝑦2′ + 𝑄(𝑥)𝑦2 = 0
𝑦1′ 𝑢1′ + 𝑢1′ 𝑦1′ + 𝑢1′′ 𝑦1 + 𝑦2′ 𝑢2′ + 𝑢2′ 𝑦2′ + 𝑢2′′ 𝑦2 + 𝑃(𝑥)(𝑢1′ 𝑦1 + 𝑢2′ 𝑦2 ) = 𝑓(𝑥)

𝑢1′ 𝑦1′ + 𝑢1′′ 𝑦1 + 𝑢2′ 𝑦2′ + 𝑢1′′ 𝑦1 + 𝑢1′ 𝑦1′ + 𝑢2′ 𝑦2′ + 𝑃(𝑥)(𝑢1′ 𝑦1 + 𝑢2′ 𝑦2 ) = 𝑓(𝑥)
𝑑
(𝑢1′ 𝑦1 + 𝑢2′ 𝑦2 ) + 𝑢1′ 𝑦1′ + 𝑢2′ 𝑦2′ + 𝑃(𝑥)(𝑢1′ 𝑦1 + 𝑢2′ 𝑦2 ) = 𝑓(𝑥)
𝑑𝑥

𝑢1′ 𝑦1 + 𝑢2′ 𝑦2 = 0
𝑢1′ 𝑦1′ + 𝑢2′ 𝑦2′ = 𝑓(𝑥)
Lo cual es un sistema de ecuaciones diferenciales que se pueden resolver por determinantes.
𝑦1 𝑦2 0 𝑦2 𝑦1 0
𝑤 = |𝑦 ′ 𝑦2′ | ; 𝑤1 = |𝑓(𝑥) 𝑦2′ | ; 𝑤2 = |𝑦1′ |
1 𝑓(𝑥)
𝑤1 𝑤1 𝑤2 𝑤2
𝑢1′ = 𝑤
, 𝑢1 = ∫ 𝑤
𝑑𝑥 ; 𝑢2′ = 𝑤
, 𝑢2 = ∫ 𝑤
𝑑𝑥

𝑦𝑃 = 𝑢1 𝑦1 + 𝑢2 𝑦2



Ejemplo.

Resuelva la siguiente ecuación diferencial de segundo orden, lineal,

con coeficientes constantes, no homogénea.
𝑑2 𝑦
𝑑𝑥 2
+ 𝑦 = sec (𝑥) sujeta a 𝑦(0) = 1 ; 𝑦′(0) = −1

, Solución.
𝑑2 𝑦
+ 𝑦 = sec (𝑥) ; 𝑦(0) = 1 ; 𝑦′(0) = −1
𝑑𝑥 2

𝑑2 𝑦
Primero encontramos la solución de la homogénea, para 𝑑𝑥 2
+ 𝑦 = 0.

Utilizando la ecuación auxiliar 𝑚2 + 1 = 0; 𝑚1,2 = ±𝑖 como ℂ = 𝛼 ± 𝛽𝑖

Donde 𝛼 = 0 y 𝛽 = 1, entonces la solución es 𝑦𝐻 = 𝐶1 cos(𝑥) + 𝐶2 𝑠𝑒𝑛(𝑥)

Para la solución particular consideramos que 𝑦𝑝 = 𝑢1 𝑦1 + 𝑢2 𝑦2 entonces,

𝑦1 = cos (𝑥) ; 𝑦1′ = −𝑠𝑒𝑛(𝑥) ; 𝑦2 = sen (𝑥) ; 𝑦2′ = 𝑐𝑜𝑠(𝑥).
cos(𝑥) 𝑠𝑒𝑛(𝑥)
𝑤=| | = 𝑐𝑜𝑠 2 (𝑥) + 𝑠𝑒𝑛2 (𝑥) = 1
−𝑠𝑒𝑛(𝑥) cos(𝑥)
0 𝑠𝑒𝑛(𝑥) 1
𝑤1 = | | = − sec(𝑥) 𝑠𝑒𝑛(𝑥) = − cos(𝑥) 𝑠𝑒𝑛(𝑥) = −tan (𝑥)
sec (𝑥) cos(𝑥)
cos (𝑥) 0 1
𝑤2 = | | = sec(𝑥) 𝑐𝑜𝑠(𝑥) = cos(𝑥) 𝑐𝑜𝑠(𝑥) = 1
−sen (𝑥) sec (𝑥)

𝑢1 = ∫ − tan(𝑥) 𝑑𝑥 = ln (cos (𝑥) 𝑢2 = ∫ 𝑑𝑥 = 𝑥

𝑦𝑝 = cos(𝑥) ln(cos(𝑥)) + 𝑥𝑠𝑒𝑛(𝑥)

𝑦 = 𝐶1 cos(𝑥) + 𝐶2 𝑠𝑒𝑛(𝑥) + cos(𝑥) ln(cos(𝑥)) + 𝑥𝑠𝑒𝑛(𝑥)
𝑦 ′ = −𝐶1 sen(𝑥) + 𝐶2 𝑐𝑜𝑠(𝑥) − 𝑠𝑒𝑛(𝑥) ln(cos(𝑥)) + 𝑥𝑐𝑜𝑠(𝑥)
Si 𝑦(0) = 1 ; 1 = 𝐶1 ;

Si 𝑦′(0) = −1 ; −1 = 𝐶2

𝑦 = cos(𝑥) − 𝑠𝑒𝑛(𝑥) + 𝑥𝑠𝑒𝑛(𝑥) + cos(𝑥) ln(cos(𝑥))
𝑦 = cos(𝑥) (1 + ln(cos(𝑥)) − 𝑠𝑒𝑛(𝑥)(1 − 𝑥)



Ejemplo.

Resuelva la siguiente ecuación diferencial de segundo orden, lineal,

con coeficientes constantes, no homogénea.
𝑑2 𝑦 𝑑𝑦 1
+3 𝑦 + 2𝑦 =
𝑑𝑥 2 𝑑𝑥 1+𝑒 𝑥

Solución.
𝑑2 𝑦 𝑑𝑦 1
𝑑𝑥 2
+ 3 𝑑𝑥 + 2𝑦 = 1+𝑒 𝑥 ;

𝑑2 𝑦 𝑑𝑦
Primero encontramos la solución de la homogénea, para 𝑑𝑥 2
+ 3 𝑑𝑥 + 2𝑦 = 0.

Utilizando la ecuación auxiliar 𝑚2 + 3𝑚 + 2 = 0; (𝑚 + 2)(𝑚 + 1) = 0, 𝑚1 = −2, 𝑚2 = −1

entonces la solución es 𝑦𝐻 = 𝐶1 e−2𝑥 + 𝐶2 𝑒 −𝑥

Para la solución particular consideramos que 𝑦𝑝 = 𝑢1 𝑦1 + 𝑢2 𝑦2 donde,

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller jocelynmarcial30. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $9.49. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

76799 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$9.49
  • (0)
  Add to cart