100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada
logo-home
Summary Complete Energetics II Revision Notes (A Level Edexcel) 3,69 €   Añadir al carrito

Resumen

Summary Complete Energetics II Revision Notes (A Level Edexcel)

1 revisar
 24 vistas  0 veces vendidas
  • Grado
  • Institución

Comprehensive study guide for Chemistry A Level, made by an Oxford Biochemistry student with all 9s at GCSE and 3 A*s at A Level! Information arranged by spec point. Notes written using past papers, textbooks and more.

Vista previa 2 fuera de 14  páginas

  • 20 de marzo de 2021
  • 14
  • 2020/2021
  • Resumen

1  revisar

review-writer-avatar

Por: subiranapaili • 3 año hace

avatar-seller
ENERGETICS II
13A: LATTICE ENERGY
1. be able to define lattice energy as the energy change when one mole
of an ionic solid is formed from its gaseous ions
Lattice energy, ΔHLEϴ – the energy change when one mole of an ionic solid is
formed from its constituent gaseous ions under standard conditions.
 Na+ (g) + Cl- (g)  NaCl (s), ΔHLEϴ = -775 kJ mol-1
 A very large negative value shows that the ionic bonds in the lattice are very
strong.
o More energy is released when the ionic bonds are formed.
o The lattice energy of MgCl2 would be stronger than that of NaCl.
 Born-Haber cycles are used to indirectly determine lattice energy as it cannot
be measured directly.


2. be able to define the terms:
i) enthalpy change of atomisation, ΔatH
Enthalpy change of atomisation, ΔHatϴ – the enthalpy change when one mole of
gaseous atoms is formed from the element in its standard state.
 This is always an endothermic process, as bonds are broken.
 Na (s)  Na (g), ΔatH = + 108 kJ mol-1
 Cl2 (g)  Cl (g), ΔatH = + 121 kJ mol-1


ii) electron affinity
First electron affinity, ΔHEA1ϴ – the enthalpy change when one mole of gaseous
atoms each gain one electron, forming one mole of gaseous, singly charged
anions.
 Cl (g) + e-  Cl- (g), ΔHEA1ϴ = – 364 kJ mol-1
 This is an exothermic process for all non-noble gas elements, as you are
forming an electrostatic force of attraction between the negatively charged
electron and the positively charged nucleus.
Second electron affinity, ΔHEA2ϴ – the enthalpy change when one mole of
gaseous, singly charged anions each gain one electron, forming one mole of
gaseous, doubly charged anions.
 O (g) + e-  O2- (g), ΔHEA1ϴ = + 798 kJ mol-1
 This is an endothermic process, as energy is required to overcome the force
of repulsion between the electron and the negatively charged O - ion.


3. be able to construct Born-Haber cycles and carry out related
calculations

, A Born-Haber cycle is another application of Hess’ Law that can be used to
calculate lattice energy.
 They are often shown as an energy diagram, with exothermic ΔH values
pointing downwards and endothermic ΔH values pointing upwards.
 The steps involved, e.g. for CaCl 2:

Process Equation Enthalpy
change
Atomisation of ΔHatϴ[Ca Ca (s)  Ca (g) Endothermic
cation (s)]
Ionisation of ΔHIE1ϴ[Ca Ca (g)  Ca+ (g) + e- Endothermic
cation (g)]
Ionisation of ΔHIE1ϴ[Ca+ Ca+ (g)  Ca2+ (g) + e- Endothermic
cation (g)]
Atomisation of ΔHatϴ[Cl2 Cl2 (g)  2 Cl (g) Endothermic
anion (g)]
Ionisation of ΔHEA1ϴ[Cl Cl + e- (g)  Cl- (g) Exothermic
anion (g)]
Lattice energy of ΔHLEϴ[CaCl2 Ca2+ (g) + 2 Cl- (g)  Exothermic
CuCl2 (s)] CaCl2 (s)


Calculating enthalpy change values using a Born-Haber cycle:
 Hess’ law tells us that the enthalpy change accompanying a chemical change
is independent of the route by which the chemical change occurs.
o This enables us to calculate certain enthalpy changes using the other
data available.
 N.B. When the stoichiometry is not 1:1, you must multiply the enthalpy
changes accordingly.
o 2 Fe (g) + 1.5 O2 (g)  2 Fe (g) + 3 O (g)
o ΔHatϴ[O2 (g)] = +249.2 kJ mol-1
o You are forming 3 moles of oxygen atoms, so the enthalpy change for
this equation would be 3 x ΔHatϴ[O2 (g)] = 3 x +249.2 kJ mol-1 = +
747.6 kJ mol-1
 We can calculate the lattice energy of NaCl using the data given in the Born-
Haber cycle below:
o ΔHLEϴ[NaCl] = ΔHfϴ[NaCl] – ΔHatϴ[Na] – ΔHIE1ϴ[Na] – ΔHatϴ[Cl2] – ΔHEA1ϴ[Cl]
o ΔHLEϴ[NaCl (s)] = – 411 – 107 – 496 – 122 + 349 = – 787 kJ mol -1

Los beneficios de comprar resúmenes en Stuvia estan en línea:

Garantiza la calidad de los comentarios

Garantiza la calidad de los comentarios

Compradores de Stuvia evaluaron más de 700.000 resúmenes. Así estas seguro que compras los mejores documentos!

Compra fácil y rápido

Compra fácil y rápido

Puedes pagar rápidamente y en una vez con iDeal, tarjeta de crédito o con tu crédito de Stuvia. Sin tener que hacerte miembro.

Enfócate en lo más importante

Enfócate en lo más importante

Tus compañeros escriben los resúmenes. Por eso tienes la seguridad que tienes un resumen actual y confiable. Así llegas a la conclusión rapidamente!

Preguntas frecuentes

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

100% de satisfacción garantizada: ¿Cómo funciona?

Nuestra garantía de satisfacción le asegura que siempre encontrará un documento de estudio a tu medida. Tu rellenas un formulario y nuestro equipo de atención al cliente se encarga del resto.

Who am I buying this summary from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller Annaobriann. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy this summary for 3,69 €. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

45,681 summaries were sold in the last 30 days

Founded in 2010, the go-to place to buy summaries for 14 years now

Empieza a vender
3,69 €
  • (1)
  Añadir