Tema 1. Espacios de Probabilidad y Variables Aleatorias: Espacios de Probabilidad. 1
A. Probabilidad.
Un experimento aleatorio tiene asociados los siguientes elementos:
• Espacio muestral. Conjunto Ω de todos los resultados (conceptualmente) posibles.
• Resultados. Elementos ω del espacio muestral, también llamados puntos muestrales o realizaciones.
• Sucesos. Subconjuntos de Ω para los cuales esta definida la probabilidad.
Observación. En la práctica la mayor parte de los espacios muestrales pertenecen a una de las siguientes categorı́as:
1. Conjunto finito: Ω = {0, 1}, Ω = {1, . . . , n}.
2. Conjunto infinito numerable: Ω = N, Ω = Z.
3. Conjunto no numerable: Ω = R, Ω = [0, 1], Ω = R+ = [0, ∞).
4. Conjunto finito de replicaciones: Ω = Ωn0 = {ω = (ω1 , . . . , ωn ) : ωi ∈ Ω0 ∀i}.
5. Conjunto infinito (numerable) de replicaciones: Ω = ΩN
0 = {ω = (ω1 , ω2 , . . . ) : ωi ∈ Ω0 ∀i}.
6. Espacios de funciones: Ω = C[0, 1]
Definición. Una σ-álgebra sobre Ω es una familia, F, de subconjuntos de Ω, tal que verifica:
1. Ω ∈ F.
2. Si A ∈ F, entonces Ac ∈ F .
S∞
3. Si A1 , A2 , . . . ∈ F, entonces i=1 Ai ∈ F.
Observación. Dada una familia C de subconjuntos de Ω, existe la menor σ-álgebra que la contiene (menor en el sentido
de que cualquier σ-álgebra que contenga a C también la contiene a ella). La denotaremos, en general, por σ(C) y diremos
que es la σ-álgebra generada por C.
Un caso particular es la σ-álgebra de Borel sobre R: B(R).
Asociados a un experimento aleatorio siempre tendremos un espacio muestral y una σ-álgebra, (Ω, F). A los elementos
de F los llamaremos sucesos.
Definición. Una probabilidad sobre (Ω, F) es una función P : F −→ R tal que
1. P (A) ≥ 0, ∀A ∈ F.
2. P (Ω) = 1.
3. (Numerablemente aditiva) Cualesquiera que sean A1 , A2 , . . . ∈ F disjuntos dos a dos,
∞
[ ∞
X
P( Ai ) = P (Ai )
i=1 i=1
A la tripleta (Ω, F, P ) la llamaremos espacio de probabilidad.
Observación. Quizás la interpretación más plausible de P (A) es como la tendencia de la frecuencia con la que ocurre
A bajo replicaciones independientes del experimento aleatorio.
,Tema 1. Espacios de Probabilidad y Variables Aleatorias: Espacios de Probabilidad. 2
Teorema 1. (Propiedades de la Probabilidad). Sea (Ω, F, P ) un espacio de probabilidad. Entonces:
1. P (∅) = 0.
Sn Pn
2. Si A1 , . . . , An ∈ F son disjuntos dos a dos, entonces P ( i=1 Ai ) = i=1 P (Ai ).
3. Si A ∈ F , entonces P (Ac ) = 1 − P (A).
4. Si A, B ∈ F tal que A ⊆ B, entonces P (B \ A) = P (B) − P (A).
5. P es monótona.
6. Si A, B ∈ F, entonces P (A ∪ B) = P (A) + P (B) − P (A ∩ B).
7. Si A, B ∈ F, entonces P (A ∪ B) ≤ P (A) + P (B).
S∞ P∞
8. Si A1 , A2 , . . . ∈ F , entonces P ( i=1 Ai ) ≤ i=1 P (Ai ).
Definición. Sean A1 , A2 , . . . y A subconjuntos de Ω.
1. El lı́mite superior de (An ) es el conjunto de los ω tal que ω ∈ An para un número infinito de valores de n:
∞ [
\ ∞
lim sup An = An (utilizaremos la notación {An , i.o.})
n
k=1 n=k
2. El lı́mite inferior de (An ) es el conjunto de los ω tal que ω ∈ An para un todos los valores de n salvo a lo sumo un
número finito:
[∞ \ ∞
lim inf An = An (utilizaremos la notación {An , ult.})
n
k=1 n=k
3. La sucesión (An ) converge a A, y escribiremos A = limn→∞ An ó An −→ A, si lim inf n An = lim supn An = A.
Teorema 2. Sea (Ω, F, P) un espacio de probabilidad. Entonces se verifica:
S∞
1. Si An ↑ A en F (i.e. A1 ⊆ A2 ⊆ . . . , An → A = k=1 Ak ), entonces P (An ) ↑ P (A).
T∞
2. Si An ↓ A en F (i.e. A1 ⊇ A2 ⊇ . . . , An → A = k=1 Ak ), entonces P (An ) ↓ P (A).
3. Si An −→ A en F, entonces P (An ) −→ P (A)
Teorema
P∞ 3. (Lema de Borel-Cantelli). Sea (Ω, F, P) un espacio de probabilidad y A1 , A2 , . . . ∈ F.
Si n=1 P (An ) < +∞, entonces P ({An , i.o.}) = 0.
Definición. Un suceso A es casi seguro (c.s.) u ocurre casi seguramente si P (A) = 1, y nulo si P (A) = 0. Una
propiedad de los resultados de un experimento aleatorio se verifica casi seguramente (c.s.) si existe un suceso casi seguro
sobre el cual es satisfecha.
, Tema 1. Espacios de Probabilidad y Variables Aleatorias: Espacios de Probabilidad. 3
B. Probabilidad sobre (R, B(R)).
Consideraremos P una probabilidad sobre (R, B(R))
Definición. La función de distribución de P es la función FP : R −→ [0, 1] definida por FP (t) = P ((−∞, t]).
Observación. Si FP = FP 0 , entonces P = P 0 .
Teorema 4. Sea FP la función de distribución de P . Entonces:
1. FP es creciente.
2. FP es continua por la derecha (i.e. FP (t+) = FP (t), donde FP (t+) = lims↓t FP (s)).
3. FP (−∞) = limt→−∞ FP (t) = 0; FP (+∞) = limt→∞ FP (t) = 1
Teorema 5. Sea F : R −→ R una función creciente, continua por la derecha con F (−∞) = 0 y F (+∞) = 1. Entonces
existe una única probabilidad P sobre (R, B(R)) tal que FP = F .
Hay dos clases muy importantes de probabilidades sobre R: probabilidades discretas y absolutamente continuas.
Definición. Una probabilidad sobre (R, B(R)), P , se dice discreta si existe un conjunto numerable C tal que P (C) = 1.
Proposición 6. Las siguientes afirmaciones son equivalentes para una probabilidad P sobre (R, B(R)):
1. P es discreta.
P
2. Existe
Pun conjunto numerable de números reales (ti )i y valores pi , con pi > 0 para cada i y i pi = 1, tal que
P = i pi Eti , (siendo Ex (A) = 1 si x ∈ A; 0 si x ∈
/ A).
P
3. Existe unPconjunto numerable de números reales (ti )i y valores pi , con pi > 0 para cada i y i pi = 1, tal que
FP (t) = i pi I(−∞,t] (ti ), para todo t ∈ R.
Definición. Una probabilidad P sobre (R, B(R)) se dice absolutamente continua si existe una función positiva, fP ,
sobre R, que llamaremos función de densidad de P , tal que para cualquier intervalo (a, b]
Z b
P ((a, b]) = fP (t)dt. (1)
a
Observación.
1. En el caso más general las integrales son de Lebesgue. De todos modos en casi todos los casos utilizados las
integrales son de Riemann.
2. El término ”la” función de densidad de P no es del todo preciso, puesto que en un sentido técnico no es
única. De todos modos cualesquiera dos funciones que satisfagan (1) difieren a lo sumo en un conjunto de
medida de Lebesgue nula.
Proposición 7. La probabilidad P sobre (R, B(R)) es absolutamente continua si y sólo si existe una función positiva
R +∞
sobre R con −∞ f (s)ds = 1 y
Z t
FP (t) = f (s)ds, t ∈ R.
−∞
Observación. Una probabilidad sobre (R, B(R)) no necesariamente es discreta o absolutamente continua, puede tener
componentes de los dos términos o de ninguno. En realidad existe un tercer tipo de distribuciones de probabilidad sobre
(R, B(R)), las probabilidades singulares.