100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada
logo-home
Exámenes de técnicas de recepción y transmisión de señales 3,99 €   Añadir al carrito

Examen

Exámenes de técnicas de recepción y transmisión de señales

 9 vistas  0 veces vendidas

Recopilación de exámenes de técnicas de recepción y transmisión de señales

Vista previa 2 fuera de 8  páginas

  • 16 de agosto de 2021
  • 8
  • 2020/2021
  • Examen
  • Preguntas y respuestas
Todos documentos para esta materia (3)
avatar-seller
alejandrocomesaaalmuia
Signal Transmission & Reception Techniques – Test 2 April 1st, 2020
Last name: First name: ID:
1. Find the nul-to-null bandwidth
  of a wide-sense stationary, zero-mean process X(t) whose autocorrelation
function is RX (τ ) = A tri Tτ1 cos(2πf0 τ ), where A > 0 and f0 T1
1. How would your answer change if
 
RX (τ ) = A rect Tτ1 cos(2πf0 τ ) instead? (4)

Answer. We need to find the PSD, which is the Fourier transform of the autocorrelation:
 
τ 1
A tri cos(2πf0 τ ) ↔ AT1 sinc2 (T1 f ) ? [δ(f − f0 ) + δ(f + f0 )]
T1 2
AT1 
sinc2 (T1 (f − f0 )) + sinc2 (T1 (f + f0 )) ,

=
2
which is a couple of squared sincs centered at f = ±f0 . In the f > 0 range, the squared sinc centered at
f = f0 has zero crossings at f = f0 ± Tk1 , k = 1, 2,. . . Therefore the null-to-null bandwidth is T21 .
 
If RX (τ ) = A rect Tτ1 cos(2πf0 τ ), then the PSD would be given by
 
τ 1
A rect cos(2πf0 τ ) ↔ AT1 sinc(T1 f ) ? [δ(f − f0 ) + δ(f + f0 )]
T1 2
AT1
= [sinc(T1 (f − f0 )) + sinc(T1 (f + f0 ))] ,
2
which is not a valid PSD function, since it is negative for some frequencies. Thus RX (τ ) cannot be the
autocorrelation function of any WSS process.

2. A given amplifier has a 15-dB gain and 70-MHz noise equivalent bandwidth. The noise power at its output
is −73 dBm when at its input the PSD of thermal noise is −175 dBm/Hz. Obtain the noise figure of the
amplifier, in dB. [ Boltzmann’s constant: 1.38 · 10−23 J/K; Avogadro’s number: 6.023 · 1023 mol−1 .] (3)

Answer. The noise power at the output is Pno = GPni + Pna , where Pni = N20 · 2Beq is the noise power at the
input, and Pna = GκTe Beq is the noise power introduced by the non-ideal amplifier. Since G = 101.5 = 31.63,
N0 −17.5 = 3.16 · 10−18 mW/Hz, and B = 70 · 106 Hz, we have
2 = 10 eq

GPni = 31.63 × 3.16 · 10−18 × 140 · 106 ≈ 1.4 · 10−8 mW.

On the other hand,

Pna = GκTe Beq = 101.5 × 1.38 · 10−23 × Te × 70 · 106 W = 3.05 · 10−14 Te W = 3.05 · 10−11 Te mW.

Therefore,
1.4 · 10−8 + 3.05 · 10−11 Te = 10−7.3 ≈ 5 · 10−8 mW,
from which the effective noise temperature is Te ≈ 1178.4 K. Finally, the noise figure is
   
Te 1178.4
F = 10 log10 1 + = 10 log10 1 + ≈ 7 dB.
T0 290

, 3. The following Matlab code is part of a simulation at 2 Msamples/s of an envelope detector. Vector x contains
samples of a DSB-LC signal (modulation index 0.7, carrier frequency 400 kHz, 140 kHz bandwidth) corrupted
by white noise. Fill in the blanks of the first line in order to make sure that the envelope detector works
properly, and show your reasoning. What is the delay, in ms, introduced by the filtering stage? (3)

frecs = ; amps = ;
resp = firpm(80, frecs, amps); y = filter(resp, 1, abs(x));

Answer. Since the bandwidth of the DSB-LC signal is 140 kHz, it is clear that the filter should be lowpass
with a cutoff frequency which should be at least 12 · 140 kHz = 70 kHz. Normalizing this by half the sampling
rate f2s = 1 MHz = 1000 kHz, we obtain the normalized value 1000 70
= 0.07. Therefore, a possible choice is

frecs = [0 0.08 0.2 1]; amps = [1 1 0 0];

in which the transition band has a width of (0.2 − 0.08) f2s = 120 kHz. Of course, other choices are also valid
as long as the cutoff frequency is not smaller than 70 kHz.
80 40
The filter designed by firpm has order 80, and the delay is therefore 2 = 40 samples, or 40 × Ts = fs =
40
2000 kHz = 0.02 ms.




2

Los beneficios de comprar resúmenes en Stuvia estan en línea:

Garantiza la calidad de los comentarios

Garantiza la calidad de los comentarios

Compradores de Stuvia evaluaron más de 700.000 resúmenes. Así estas seguro que compras los mejores documentos!

Compra fácil y rápido

Compra fácil y rápido

Puedes pagar rápidamente y en una vez con iDeal, tarjeta de crédito o con tu crédito de Stuvia. Sin tener que hacerte miembro.

Enfócate en lo más importante

Enfócate en lo más importante

Tus compañeros escriben los resúmenes. Por eso tienes la seguridad que tienes un resumen actual y confiable. Así llegas a la conclusión rapidamente!

Preguntas frecuentes

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

100% de satisfacción garantizada: ¿Cómo funciona?

Nuestra garantía de satisfacción le asegura que siempre encontrará un documento de estudio a tu medida. Tu rellenas un formulario y nuestro equipo de atención al cliente se encarga del resto.

Who am I buying this summary from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller alejandrocomesaaalmuia. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy this summary for 3,99 €. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

45,681 summaries were sold in the last 30 days

Founded in 2010, the go-to place to buy summaries for 14 years now

Empieza a vender
3,99 €
  • (0)
  Añadir