100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Samenvatting Kansrekening leerjaar 1 periode 4

Puntuación
-
Vendido
-
Páginas
19
Subido en
04-09-2021
Escrito en
2020/2021

In deze samenvatting wordt alles uitgelegd van kansrekening. Alles in de samenvatting is ook visueel gemaakt. Het vak wordt samen gegeven met statistiek, maar ik heb 2 aparte samenvattingen gemaakt zodat het overzichtelijk blijft.

Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
4 de septiembre de 2021
Número de páginas
19
Escrito en
2020/2021
Tipo
Resumen

Temas

Vista previa del contenido

Inhoudsopgave
1. Kansrekening......................................................................................................................................1
1.1 Inleiding........................................................................................................................................2
1.2 Begripsvorming.............................................................................................................................2
1.2.1 Kans experiment, uitkomsten en uitkomstenruimte.................................................................2
1.2.2 Gebeurtenissen en kans............................................................................................................3
1.2.3. Kans en getal.............................................................................................................................4
1.3 Enkelvoudige kansexperimenten..................................................................................................6
1.4 Meervoudige kansexperimenten..................................................................................................6
2. Soorten kansen...................................................................................................................................7
2.1. Inleiding.......................................................................................................................................7
2.1 Experimentele kans......................................................................................................................7
2.2 Empirische kansen........................................................................................................................9
3. Rekenregels voor kansen....................................................................................................................9
3.1 EN-regel........................................................................................................................................9
3.2 OF-regel......................................................................................................................................10
3.3 Hoe los je een kansprobleem op.................................................................................................12
3.4 Complementregel.......................................................................................................................13
4. Onafhankelijk en afhankelijke gebeurtenissen.................................................................................14
4.1 Voorwaardelijke kans.................................................................................................................14
4.2 (On)afhankelijke gebeurtenissen................................................................................................14
5. Een eerst kijk op: kansverdelingen en stochasten............................................................................15
5.1 Wat is een kansverdeling? Wat is een stochast?........................................................................15
6. De verwachtingswaarde van een stochast........................................................................................16
6.1 Rekenkundig gemiddelde...........................................................................................................17
6.1 Stochastisch gemiddelde of verwachtingswaarde......................................................................17
7. De standaarddeviatie van een stochast............................................................................................18
7.1 Statistische standaarddeviatie....................................................................................................18




1. Kansrekening

,1.1 Inleiding

Als we het hebben over de kans dat iets gebeurt, dan hebben we allemaal wel
een bepaald idee wat begrip betekent. Als we een muntstuk gooien dan weten
1
we dat de kans op “kop” gelijk is aan . Zo is de kans op een 4 bij het eenmaal
2
1
gooien van een dobbelsteen gelijk aan .
6


1.2 Begripsvorming

1.2.1 Kans experiment, uitkomsten en uitkomstenruimte

We gooien eenmaal met een dobbelsteen. We zijn geïnteresseerd in het aantal
ogen dat bovenkomt. Omdat de uitkomst van dit experiment niet te voorspellen
is, noemen we dit ook wel een kansexperiment. De mogelijke uitkomsten zijn 1,
2, 3, 4, 5 en 6. De verzameling van alle mogelijke uitkomsten noemen we de
uitkomstenruimte of de uitkomstenverzameling. We duiden dit aan met de
Griekse letter Omega: Ω . We noteren dit als Ω={1 ,2 , 3 , 4 , 5 , 6 }

Voorbeeld 1:
We gooien eenmaal met een geldstuk. Er zijn twee mogelijke uitkomsten,
Kop (K) en Munt (M). Er geldt: Ω={K,M }

Voorbeeld 2:
We trekken blindelings een kaart uit een volledig spel kaarten (52
kaarten). Indien we slechts letten op de kleur dan geldt:
Ω ={Harten, Klaveren, Ruiten, Schoppen\} .
Een kansexperiment is een experiment waarbij de uitkomst niet zeker en/of
niet te voorspellen is.
De uitkomstenruimte van een kansexperiment is de verzameling van alle
mogelijke uitkomsten. We duiden deze verzameling aan met de Griekse letter
Omega: Ω

, 1.2.2 Gebeurtenissen en kans

Bij kansrekening zijn we geïnteresseerd in de kans dat een gebeurtenis optreedt.
Een gebeurtenis kan bestaan uit een enkele uitkomst of een combinatie van
uitkomsten. Je kan bijvoorbeeld een kans hebben op “een 2” of “een even getal”.
De eerste gebeurtenis bestaat uit de uitkomst 2. De laatste gebeurtenis
correspondeert met de drie uitkomsten 2, 4 en 6.
Een gebeurtenis geven we aan met een hoofdletter, de gebeurtenis zelf plaatsten
we tevens tussen accolades {}.

Voorbeeld:
We gooien eenmaal met een dobbelsteen en bekijken welk aantal ogen
bovenkomt.

- De gebeurtenis A = {we gooien een 2} correspondeert met A=\{2\}
- De gebeurtenis A = {we gooien een even getal} correspondeert met
A=\{2, 4, 6\}


Een gebeurtenis is eigenlijk niet anders dan een gedeelte van de
uitkomstenruimte. We noemen dit officieel ook een deelverzameling.

Deelverzamelingen geven we aan met ovalen binnen de uitkomstenruimte Ω :




Kans wordt aangegeven met een
getal. Dat getal geeft aan hoe zeker of onzeker een gebeurtenis optreedt. Is de
kans 0 dan treedt het nooit op. Is deze kans 1 dan is het zeker! Hoe dichter bij de
1 des te zeker het geheel is.
In plaats van de getallen 0 en 1 wordt ook gewerkt met procenten (0% - 100%).

De kans op een gebeurtenis A noteren we als P(A) . P staat voor Probability.

Er geldt dus: 0 ≤ P ( A ) ≤ 1 voor alle gebeurtenissen A .

Indien A gelijk is aan de gehele uitkomstenruimte Ω dan geldt: P(Ω)=1 .

In de verzamelingenleer bestaat ook de “lege verzameling”. We noteren deze
als ⊘. Dit is de verzameling die geen enkel element bevat. Er geldt: P(⊘)=0
2,99 €
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
lamhundertmark
4,0
(1)

Conoce al vendedor

Seller avatar
lamhundertmark Hogeschool Arnhem en Nijmegen
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
8
Miembro desde
4 año
Número de seguidores
8
Documentos
8
Última venta
1 año hace

4,0

1 reseñas

5
0
4
1
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes