SERIES NUMÉRICAS: FORMULARIO CRITERIO DE CONDENSACIÓN DE CAUCHY. Sean ∑∞ ∞
𝑘=1 𝑎𝑘 y ∑𝑘=1 b𝑘 dos
series de términos positivos tales que existe una constante c > 0 de modo que
▪ Sea a ≠ 0. La serie geométrica
∞ 𝑎𝑛 ≤ cb𝑛 para todo n ≥ N. Entonces, si la serie ∑∞ 𝑘=1 b𝑘 es convergente, la serie
∞
∑𝑘=1 𝑎𝑘 también es convergente.
∑ 𝑎𝑟 𝑘
𝑘=0
Sea (𝑎𝑛 ) una sucesión decreciente a 0 de números positivos. Entonces, las series
converge si |r| < 1 y su suma es ∞ ∞
∞
𝑎 ∑ 𝑎𝑘 , ∑ 2k 𝑎2k
∑ 𝑎𝑟 𝑘 =
1−𝑟 𝑘=1 𝑘=1
𝑘=0
y no converge si |r| ≥ 1. tienen el mismo carácter, es decir, o las dos convergen o las dos divergen.
▪ Series telescópicas. Sea (𝑎𝑛 ) una sucesión convergente de números reales con
límite a ∈ R. Entonces, la serie ∑∞
𝑘=1(𝑎𝑘 𝑎𝑘+1 ) es convergente y suma 𝑎1 − a.
Criterio de Pringsheim. Sea ∑∞
𝑘=1 𝑎𝑘 una serie de términos positivos. Entonces,
▪ Criterio general de convergencia. Si una serie de números reales ∑∞
𝑘=1 𝑎𝑘 1. si existe α > 1 tal que lim n𝛼 an ∈ [0, +∞), la serie ∑∞
𝑘=1 𝑎𝑘 es convergente,
es convergente entonces lim an = 0. n→∞
n→∞
2. si existe α ≤ 1 tal que lim n𝛼 an ∈ (0, +∞], la serie ∑∞
𝑘=1 𝑎𝑘 es divergente.
CRITERIOS DE CONVERGENCIA PARA SERIES DE TÉRMINOS POSITIVOS n→∞
CRITERIO DE COMPARACIÓN. Sean ∑∞ ∞
𝑘=1 𝑎𝑘 y ∑𝑘=1 b𝑘 dos series de
términos positivos tales que existe una constante c > 0 de modo que 𝑎𝑛 ≤ cb𝑛
CRITERIO DEL COCIENTE. CRITERIO DE LA RAÍZ.
para todo n ≥ N. Entonces, si la serie ∑∞𝑘=1 b𝑘 es convergente, la serie
∑∞
𝑘=1 𝑎𝑘 también es convergente. Sea ∑∞ 𝑘=1 𝑎𝑘 una serie de términos Sea ∑∞ 𝑘=1 𝑎𝑘 una serie de términos
positivos tales, y sean positivos tales, y sea
𝑎𝑛+1 ℓ = lim n√an
CRITERIO DE COMPARACIÓN POR PASO AL LÍMITE. ℓ = lim n
n a𝑛
Entonces,
Sean ∑∞ ∞
𝑘=1 𝑎𝑘 y ∑𝑘=1 𝑏𝑘 dos series de términos positivos tales
Entonces,
1. Si ℓ < 1 la serie es convergente.
𝑎𝑛 1. Si ℓ < 1 la serie es convergente.
lim =ℓ
𝑛→∞ b𝑛 2. Si ℓ > 1 la serie diverge.
2. Si ℓ > 1 la serie diverge.
Entonces, 3. Si ℓ = 1 el criterio no da
3. Si ℓ = 1 el criterio no da
información.
1. Si ℓ > 0, la serie ∑∞ ∞ información.
𝑘=1 𝑎𝑘 es convergente si y solo si lo es la serie ∑𝑘=1 b𝑘 .
2. Si ℓ = 0 y ∑∞ ∞
𝑘=1 b𝑘 converge, la serie ∑𝑘=1 𝑎𝑘 también converge.
3. Si ℓ = +∞ y ∑∞ ∞
𝑘=1 𝑎𝑘 ak converge, la serie ∑𝑘=1 b𝑘 también converge.
Los beneficios de comprar resúmenes en Stuvia estan en línea:
Garantiza la calidad de los comentarios
Compradores de Stuvia evaluaron más de 700.000 resúmenes. Así estas seguro que compras los mejores documentos!
Compra fácil y rápido
Puedes pagar rápidamente y en una vez con iDeal, tarjeta de crédito o con tu crédito de Stuvia. Sin tener que hacerte miembro.
Enfócate en lo más importante
Tus compañeros escriben los resúmenes. Por eso tienes la seguridad que tienes un resumen actual y confiable.
Así llegas a la conclusión rapidamente!
Preguntas frecuentes
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
100% de satisfacción garantizada: ¿Cómo funciona?
Nuestra garantía de satisfacción le asegura que siempre encontrará un documento de estudio a tu medida. Tu rellenas un formulario y nuestro equipo de atención al cliente se encarga del resto.
Who am I buying this summary from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller alistats. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy this summary for 2,99 €. You're not tied to anything after your purchase.