100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada
logo-home
Samenvatting Medische Microbiologie 7,00 €   Añadir al carrito

Resumen

Samenvatting Medische Microbiologie

 19 vistas  1 veces vendidas
  • Grado
  • Institución

Samenvatting van de colleges van Medische Microbiologie in de track Patiëntgericht Onderzoek

Vista previa 4 fuera de 64  páginas

  • 27 de febrero de 2022
  • 64
  • 2021/2022
  • Resumen
avatar-seller
Medical Microbiology
Lecture 1 – Introduction to Bacteriology

Microbiome → bacteria/microorganisms in the gut
500-1000 different species in and on our body (skin and gut)

Microbiome as a source of health
➔ Nutrition and metabolism of food
o Breakdown of indigestible polysaccharides
o Production of vitamins B and K
➔ Maturation and instruction of immune system
o Respond to harmful agents, but not to food for example
➔ Colonization resistance → protection against invaders
o Protection from infiltration by harmful microorganisms by competing for nutrients or spot
- Potential disease-causing bacteria among healthy microbiome → risk of infection

Commensalism → presence of microorganisms multiplying in host without damage and reaction from host
Infection → presence (invasion) of microorganisms multiplying in host, with damage to and reaction of host

Opportunistic pathogens commonly present in healthy microbiome
➔ Many pathogens typically colonize skin or mucosal surfaces of healthy individuals without producing
symptoms → because our body is equipped with very effective immune defense mechanisms that kills
any invading bacterium in seconds/minutes
o Occurrence of acute infections → failure of the immune system to fulfill its defense function
o Understanding molecular mechanisms of infections provides insights into host immunity but
also unlocks opportunities for therapies that take host-pathogen interaction into account
- For example → Neisseria meningitidis, Streptococcus pneumoniae, Staphylococcus aureus, group A
Streptococcus

Pathogen → microorganism able to cause disease
Pathogenicity → ability to cause disease in a host organism
Virulence → the degree of pathogenicity of the microbe
Virulence factor → microbial component that contributes to disease-causing ability
Carrier → host that harbors potential pathogen without disease

Relationship between host and pathogen is dynamic since each modifies activities and functions of the other
➔ The outcome of such relationship depends on the virulence of the pathogen and the relative degree of
resistance or susceptibility of the host, due mainly to the effectiveness of the host defense mechanisms

Staphylococcus aureus, most prevalent pathogen of humans, may cause up to one third of all bacterial diseases
ranging from boils and pimples to food poisoning, to septicemia and toxic shock
- Staphylococcal scalded skin syndrome (SSSS) → red blistering skin looking like a burn or scald
o Caused by an upper respiratory infection in children
o Caused by abscesses or septic arthritis in adults
- Food poisoning → nausea, vomiting, and diarrhea
o Caused by ingestion of contaminated food, entry via the gastrointestinal tracts
➔ About 15-40% of healthy humans are carriers of Staphylococcus aureus → can naturally be in the nasal
throat area, ears
➔ Staph aureus is a so-called opportunistic pathogen, when it sees a chance, it will cause infection. The
bacteria need a kind of "entrance" (= port d'entrance) to penetrate the skin or mucosa

,Course of infection is determined by
1. Route of contamination and invasion of the host
2. Properties of the microorganism → pathogenicity of pathogen is due to virulence factors of pathogen
3. Properties of the host
o Child, adult, elderly
o Healthy or reduced resistance
o Vaccination

Pathogenicity
- Invasiveness → ability to invade tissues
o Colonization and bypass of host defense
- Toxigenesis → ability to produce toxins (virulence factors)
o Exotoxins (released from cells) and endotoxins (cell-associated)

Virulence factors
- Adhesins, invasins, capsule, toxins, enzymes, pili
➔ SSSS → exfoliative toxins A and B bind to a molecule within the desmosome and break it up
o Toxins come from the bloodstream
➔ Food poisoning → enterotoxin A

Virulence factors of S. aureus
- Toxins:
o Cytolytic toxins → tissue destruction/abscess formation
o Enterotoxins (A-E) → toxicity (30-50% of the strains)
o Exfoliative toxin → blistering: loss of desmosomes
- Enzymes
o Coagulase → conversion fibrinogen to fibrine
o Hyaluronidase, lipase, fibrinolysis → distribution in tissues
o Catalase → protection against oxygen radicals




Genus Staphylococcus
- More than 30 species
- Commensals, but opportunistic pathogens
- 3 species are most important humane pathogens
▪ S. aureus
▪ S. epidermis
▪ S. saprophyticus

Disease with a similar clinical presentation can be
caused by different pathogens

Neisseria meningitidis
- Gram-negative diplococcus
- Humans are the only natural host

Infection and transmission → transfer of microorganisms from one place to another; possible multiplication,
possible damage, possible reaction of the host
Zoonosis → transmission of microorganisms through contact with animals

,Lecture 2 – Diagnostics of bacterial infections

Detection of bacterial etiology
- Detection of agents → microscopy, culture, nucleic acid detection, antigen detection
- Detection of immunoglobulins against agents → serology

Microscopy
- Gram negative and positive → dye is not washed out in Gram positive bacteria
- Ziehl Neelsen → zuurvaste rods (staven), mycobacteria (bacteria of tuberculosis)
- Methylene blue

Media (solid or liquid)
- Selective/non-selective
Incubation → environment,
duration
Material → sterile/non-sterile



Media, environment and duration → depending on clinical picture and material
Review → selective media and antibiotics to detect the pathogen

Identification of bacteria
- Biochemical → bonte rij, Vitek, Phoenix
- MALDI-TOF MS → automatic protein mass distribution analysis
- Sequence analysis

Resistance against antibiotics
- Microdilution with MIC (minimal inhibitory concentration)

Nucleic acid detection
- When bacteria are not/hardly growing
▪ Mycobacteria
▪ Mycoplasm
▪ Chlamydia
▪ Legionella
▪ Coxiella

Serology
- Detection of specific antibodies against bacteria
o Bordetella pertussis/parapertussis
o Brucella
- Detection of antigens
o Helicobacter
o Legionella

VOC → volatile organic components
➔ organic chemicals that have a high vapor
pressure at room temperature. High vapor
pressure correlates with a low boiling point,
which relates to the number of the sample's
molecules in the surrounding air, a trait known
as volatility. VOCs are responsible for odor of
scents

, Lecture 3 & 4 – Invasive meningococcal disease: Epidemiology and Vaccines

Neisseria meningitidis → “meningococcus”
- Gram-negative diplococcus
- Natural habitat → the human nasopharynx, 5-30% of
population colonized
➔ Only in humans, a lot of carriers among us
Meningococcal carriage prevalence by age → around 19 years of age

Risk factors for meningococcal carriage
- Active and passive smoking
- Kissing
- Crowds
- Frequent bar/disco visits

➔ Carriage decreased in 15 years of time
o Because of changes in risk factors for meningococcal carriage

Invasive meningococcal disease (IMD)
- 0.01% of colonized hosts invasive disease
- Septicemia and/or meningitis
1. Colonization
2. Invasion of epithelium
3. Invasion of blood
4. Disseminations: CSF

IMD
- Meningococcemia → meningococci in
bloodstream
o Sepsis
o Petechial rash → pinpoint, round
spots in skin as result from bleeding
o Disseminated intravascular
coagulation (DIC) → abnormal blood
clotting
▪ Ischemic tissue damage
▪ Purpura fulminans
- Meningitis → inflammation of the protective membranes covering the brain and spinal cord

IMD across Europe → rare but devastating
- 30 EU countries in 2017 → 3221 cases of IMD
o Incidence → 0.45 – 1.33 per 100.000
o Case fatality rate = 9.7%

Incidence of IMD → age distribution and circulation
- Age of the most prevalent carriers (adolescents), but also children
o Spread is mainly caused from the adolescent carrier group

IMD worldwide
- 1.2 million cases of IMD with 135.000 deaths worldwide yearly
o Incidence ranges strongly per region from high (>10/100,000) to low incidence (<2/100,000)
o Mortality rate → 10%-15%
o Morbidity rate → ~30%
- Morbidity in IMD survivors → limb loss, cognitive deficits, hearing loss, seizure disorders

Los beneficios de comprar resúmenes en Stuvia estan en línea:

Garantiza la calidad de los comentarios

Garantiza la calidad de los comentarios

Compradores de Stuvia evaluaron más de 700.000 resúmenes. Así estas seguro que compras los mejores documentos!

Compra fácil y rápido

Compra fácil y rápido

Puedes pagar rápidamente y en una vez con iDeal, tarjeta de crédito o con tu crédito de Stuvia. Sin tener que hacerte miembro.

Enfócate en lo más importante

Enfócate en lo más importante

Tus compañeros escriben los resúmenes. Por eso tienes la seguridad que tienes un resumen actual y confiable. Así llegas a la conclusión rapidamente!

Preguntas frecuentes

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

100% de satisfacción garantizada: ¿Cómo funciona?

Nuestra garantía de satisfacción le asegura que siempre encontrará un documento de estudio a tu medida. Tu rellenas un formulario y nuestro equipo de atención al cliente se encarga del resto.

Who am I buying this summary from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller liezemies. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy this summary for 7,00 €. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

45,681 summaries were sold in the last 30 days

Founded in 2010, the go-to place to buy summaries for 14 years now

Empieza a vender
7,00 €  1x  vendido
  • (0)
  Añadir