100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada
logo-home
La Teoría de Galois y Álgebra Lineal 9,79 €
Añadir al carrito

Tesis

La Teoría de Galois y Álgebra Lineal

 3 vistas  0 veces vendidas

Este trabajo consiste de una argumentada explicacion, detallada y ejemplificada, de las primeras tres secciones del articulo "Galois theory and linear algebra" ("Teoria de Galois y Algebra lineal") publicado por Rod Gow y Rachel Quinlan en la revista Linear Algebra and its applications numero 430. ...

[Mostrar más]

Vista previa 4 fuera de 65  páginas

  • 29 de marzo de 2022
  • 65
  • 2011/2012
  • Tesis
  • Na
  • Desconocido
Todos documentos para esta materia (1)
avatar-seller
srtajosuserranoavendao
Índice general

1. Introducción 1
1.1. Teoría de Grupos . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Álgebra Lineal . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3. Teoría de Galois . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2. Resultados 35

3. Ejemplos y conclusiones. 57

,Capítulo 1

Introducción

El siguiente trabajo consiste de una argumentada explicacion, detallada
y ejemplificada, de las primeras tres secciones del articulo Galois theory and
linear algebra (Teoria de Galois y Algebra lineal) publicado por Rod Gow y
Rachel Quinlan en la revista Linear Algebra and its applications numero 430.
Dicha explicación fue hecha con el fin de hacer los resultados mas accesibles
al publico medianamente estudiado en matemáticas.
En esta primera sección, se enuncian conceptos y resultados preliminares,
necesarios y suficientes para esclarecer este trabajo. Si el lector lo conside-
ra pertinente, puede ahondar en resultados o ejemplos en la Bibliografía,
principalmente [7], [5], o [3].


1.1. Teoría de Grupos
El concepto de grupo como es conocido actualmente, responde a la des-
cripción de estructuras que subyacen en varios problemas matemáticos, desde
el estudio de los números enteros iniciado hace cientos de años, o el estudio
de las posibles transformaciones geométricas de un objeto, hasta la búsqueda
de soluciones para ecuaciones polinomiales.

Definición 1.1.1. Un par (G, ·), donde G es un conjunto no vacío provisto
de una operación · : G × G −→ G, es un monoide bajo · si:

Para toda a, b ∈ G, a · b ∈ G.

Para toda a, b, c ∈ G, a(bc) = (ab)c

,2 Introducción


Existe un único elemento e tal que a · e = e · a = a para toda a ∈ G

Si además

Para cada a ∈ G, existe un elemento a−1 ∈ G tal que a·a−1 = a−1 ·a = e
(llamado el inverso de a en G), G es un grupo.

Si para toda a, b ∈ G se cumple que ab = ba entonces el grupo es
abeliano.

En el futuro, y cuando no genere confusión, se escribirá ab en lugar de a · b.

Ejemplo. (Z, +), el conjunto de los números enteros con la suma usual,
forman un grupo abeliano. Así también (Zn , +) con Zn = {0, 1, . . . , n −
1} y + la suma módulo n, donde para cada a ∈ Zn su inverso es n − a.

(Q, +) como en el ejemplo anterior, es un grupo abeliano, pero (Q, ·)
los racionales con el productor usual, no es grupo ya que el cero no
tiene inverso multiplicativo, sin embargo (Q \ {0}, ·) es un también un
grupo abeliano.

Consideremos ahora un triángulo equilátero, y todas sus simetrías, es
decir, los movimientos que lo dejan ocupando el mismo espacio. De
estos, llamemos ρ0 al que lo deja fijo, ρ1 al que lo rota 120o en dirección
contraria a las manecillas de reloj, ρ2 al que lo rota 240o en la misma
dirección, y por ultimo, µ1 , µ2 , µ3 a las reflexiones respecto a las lineas
que bisecan el triángulo.
Viendo a cada uno de estos movimientos como funciones que van del
conjunto {1, 2, 3} en si mismo, aplicar dos movimientos seguidos puede
traducirse en componer las funciones antes descritas. Así
ρ2 µ3 = ρ2 (µ3 ) = µ1 . De lo anterior, podemos afirmar intuitivamente
que dichas funciones, bajo composición, forman un grupo, sin embar-
go, en este caso en particular, dicho grupo puede ser nombrado de dos
formas distintas: por un lado puede verse como el grupo de simetrías
del polígono de 3 lados (triángulo), denotado D3 , y por el otro pue-
de considerarse como el grupo de permutaciones de un conjunto de 3
elementos denotado por S3 . Claramente, puede obtenerse con un pro-
cedimiento análogo el grupo pertinente para cada n ∈ N. Sin embargo,
es fácil ver que estos grupos no siempre son iguales; comparando las
simetrías del cuadrado, con las permutaciones de un conjunto con 4

, 1.1 Teoría de Grupos 3


,, , ,
,
, ,
/',
,u,
/',
,u,
/', , , !I
, ~, ,~,




, ,
, ,
, u ,
, , /',
, ~, ,ú " ,
,u,
, , ,
,
,'
!I , ~
,ji, , /\ - ,!\ ,
Figura 1.1: Simetrías del triángulo

elementos, se puede ver que en el caso de las simetrías, los numeros
asignados a esquinas opuestas jamás podrán tener una arista en común
(dado que lo único permitido en este caso es rotar el cuadrado respecto
al centro, o a un eje de simetría, dejándolo en su posición original),
sin embargo, en las permutaciones, esto si está permitido. Una forma
clara de ver como se comporta nuestro ejemplo concreto, es construir
una tabla, en donde la entrada localizada en el i-ésimo renglon, j-ésima
columna, represente el resultado de la composición ij = i(j).

· ρ0 ρ1 ρ2 µ1 µ2 µ3
ρ0 ρ0 ρ1 ρ2 µ1 µ2 µ3
ρ1 ρ1 ρ2 ρ0 µ3 µ1 µ2
ρ2 ρ2 ρ0 ρ1 µ2 µ3 µ1
µ1 µ1 µ3 µ2 ρ0 ρ2 ρ1
µ2 µ2 µ1 µ3 ρ1 ρ0 ρ2
µ3 µ3 µ2 µ1 ρ2 ρ1 ρ0

Además S3 no es abeliano, ya que µ3 µ2 = ρ1 6= ρ2 = µ2 µ3 .
En general, las funciones biyectivas de un conjunto en sí mismo forman
un grupo bajo composición.
Sn es conocido como el grupo simétrico, y Dn como el grupo diédrico.
Definimos el orden de un grupo como el número de elementos del conjunto
G, denotado |G|. G es finito si |G| es finito, en caso contrario G es infinito.

Los beneficios de comprar resúmenes en Stuvia estan en línea:

Garantiza la calidad de los comentarios

Garantiza la calidad de los comentarios

Compradores de Stuvia evaluaron más de 700.000 resúmenes. Así estas seguro que compras los mejores documentos!

Compra fácil y rápido

Compra fácil y rápido

Puedes pagar rápidamente y en una vez con iDeal, tarjeta de crédito o con tu crédito de Stuvia. Sin tener que hacerte miembro.

Enfócate en lo más importante

Enfócate en lo más importante

Tus compañeros escriben los resúmenes. Por eso tienes la seguridad que tienes un resumen actual y confiable. Así llegas a la conclusión rapidamente!

Preguntas frecuentes

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

100% de satisfacción garantizada: ¿Cómo funciona?

Nuestra garantía de satisfacción le asegura que siempre encontrará un documento de estudio a tu medida. Tu rellenas un formulario y nuestro equipo de atención al cliente se encarga del resto.

Who am I buying this summary from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller srtajosuserranoavendao. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy this summary for 9,79 €. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

45,681 summaries were sold in the last 30 days

Founded in 2010, the go-to place to buy summaries for 14 years now

Empieza a vender
9,79 €
  • (0)
Añadir al carrito
Añadido