Introduction To Computational Neuroscience (PSY3365)
Todos documentos para esta materia (6)
Vendedor
Seguir
kikiboumans
Comentarios recibidos
Vista previa del contenido
Before you turn this problem in, make sure everything runs as expected. First, restart the
kernel (in the menubar, select Kernel→Restart) and then run all cells (in the menubar,
select Cell→Run All).
Make sure you fill in any place that says YOUR CODE HERE or "YOUR ANSWER HERE", as
well as your name and collaborators below:
NAME = Kiki Boumans
COLLABORATORS =
File "<ipython-input-1-342a7c538cbf>", line 1
NAME = Kiki Boumans
^
SyntaxError: invalid syntax
Assignments week 4
Complete the assignments below, save the notebook and submit them on canvas.
Assignment 4.1
According to the Hodgkin classification does the Hodgkin-Huxley neuron exhibit class 1
excitability or class 2 excitability? Justify your choice.
Class 1 excitability: Action potentials can be generated with arbitrarily low frequency,
depending on the strength of the input current. The F-I curve is continuous. Class 2
excitability: Action potentials can be only be generated within a limited frequency band.
The F-I curve is discontinuous.
Hodgkin-Huxley neurons exhibit class 2 excitability, because strengthening the input
current will increase the firing rate of the neuron. If the input current would be used as a
bifurcation parameter (parameter that changes the stability of the equilibrium, in this case
the action potential) then the Hodgkin-Huxley model undergoes a socalled Hopf
bifurcation. However, due to the Hopf bifurcation there is a minimum firing rate for the
neurons. This indicates that either the neuron is not firing at all, or firing at the minimum
firing rate, which is also called the all-or-none principle. Due to this principle, there is no
continuous increase in action potential amplitude, but it is discontinuous with sudden
jumps in amplitude.
Assignment 4.2
Find the fixed-points of the 1-dimensional dynamical system defined by $ \dot x = rx - x^3
$ and determine whether they are attractors or repellors for r =0.5.
$ \dot x = rx - x^3 $
The fixed points are ẋ=0 and x=0
Los beneficios de comprar resúmenes en Stuvia estan en línea:
Garantiza la calidad de los comentarios
Compradores de Stuvia evaluaron más de 700.000 resúmenes. Así estas seguro que compras los mejores documentos!
Compra fácil y rápido
Puedes pagar rápidamente y en una vez con iDeal, tarjeta de crédito o con tu crédito de Stuvia. Sin tener que hacerte miembro.
Enfócate en lo más importante
Tus compañeros escriben los resúmenes. Por eso tienes la seguridad que tienes un resumen actual y confiable.
Así llegas a la conclusión rapidamente!
Preguntas frecuentes
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
100% de satisfacción garantizada: ¿Cómo funciona?
Nuestra garantía de satisfacción le asegura que siempre encontrará un documento de estudio a tu medida. Tu rellenas un formulario y nuestro equipo de atención al cliente se encarga del resto.
Who am I buying this summary from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller kikiboumans. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy this summary for 3,99 €. You're not tied to anything after your purchase.