100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada
logo-home
Mathematics AA SL IB Diploma Program - Topic 5: Calculus 5,99 €   Añadir al carrito

Entrevista

Mathematics AA SL IB Diploma Program - Topic 5: Calculus

 8 vistas  0 veces vendidas
  • Grado
  • Institución
  • Book

Detailed notes for mathematics analysis and approaches SL topic 5: calculus. Includes worked examples and IB-style questions

Vista previa 4 fuera de 65  páginas

  • 22 de agosto de 2022
  • 65
  • 2021/2022
  • Entrevista
  • Desconocido
  • Desconocido
  • Escuela secundaria
  • 1
avatar-seller
topics 5 :




Calculus

, Monday ,
8 March




introduction ntoroalculus
⑤ '
'
Calculus '
Latin word -_ pebble .





Differential calculus
*
Derivatives .
'
undamental Theory of calculus
*
Differentiation .





Integral calculus

*

Integrals .




*

Integration .





History :





Sir Isaac Newton vs .
Wilhelm Leibniz .





Newton accused Leibniz of had not published
plagerism although he his
findings on calculus .





As president of the royal society he biased a court to attribute the credit to him .





Atone time in history ,
calculus -
-
math .





Calculus t
founded in concept of LIMITS .





Lim fix )=A " LIMIT
X sa




"
as X approaches a .





Finding the limit :

⑨ ⑤ ⑤
Graph :
Lim fix )=x2 -
X -
6 Equation :L .
Lim fix )=x3
-
2x -15 Table : lim
fcx )=2

-15=33-213
X→2 x→3
X


)

5=27-6+5
t


X flx)

=
271-5 4.9 1.9


LIMIT -
- 26 4.99 1.99
XZ -
I
lim 4.999 1.999
" fix)
ztromtherictht
> 2. = X -
I




[
it
Iffy
x -
ex th
approaches
-




= g. Gaga i. 9999


f- ( x ) : -4 "
LIMIT
'
-
Xt 1 as X approaches 5
, fix) = 2


✓ approaches 2-

2. from the left f)
= It 1



LIMIT -_ 2

,⑤ Basic derivative rule :




⑨ t
f' ( x ) nxn
" -




fix )=X
' -
-




⑨ "
f' ( x ) if prime of x ( Notation ) .
1.
Bring down exponent to
multiply .




2. Subtract 1 to exponent .





Examples :




I
fix) 3×4-5×2
-
- -
Sx 2/0=1 2

fix
)=}xs -
8×4-531×3 -125×2 tax
3
gcx ) : # # # -
t -

8x



f' ( x ) 12×3-10×-5 f' 1×1=31×4-32×3 355×2+5×+9 g. ( x ) = 5×-4 3×-3+2×-2 8x
-
- - -
-




'
( x) 20×-5+9×-4 4×-3 8
g.
= -
-
-




⑤ First principle of derivatives : gicx)=
-
+
IT ¥-8 -




⑨ fxth ) fix)
f' ( x ) -_ lim -




h- O h
>
Where does it come from ?
*
Derivative is the instantaneous rate of change .




TANGENT LINE : line that touches a cuneata point .




*
Instantaneous rate of change = Gradient of a
tangent line .




SECANT LINE : line that crosses a curve at 2 Points .




spate of change = Gradient of a secant line .




y
*
Gradient -

-
X





Example : ( ( x) -_ 200×2-5×+80

"
C' 1×1=400×-5 derivative of a constant -_
Zero .




V


Rate of change of Ctx )





Derivative "
also known as the gradient function .




⑨ When substitute values of X. then you get the gradient and the tangent line at that value of
you x .




Examples Find the derivative the first principles
using
: :




I 2
fcx)= 3×-5
fcx )
-
-
XZ -

2×+1

( im flxth ) f ( x) *
ftxth ) *
flex )= fcx )=3X 5
f' ( x ) him f- ( x )
-

=
fix)=x2 -2×+1
-
-




h
h- O h
* h- O to
fcxth) =3 ( Xth ) -
5
fcxth )
-
- (Xth )2 -
2(xthltl

Lim 3Cxth ) -
S -

( 3×-5 ) Iim X72Xhth2 -
2x -
2h -11 -
( XZ 2Xt1 )
-

=x2t2xhth2 2. htt
-
2x -




h- O h h
n- O




( im # + 3h -15-3/7 # Iim xztzxhth
'
- 2x -
2. htt -212+2×-1

h→O h h- O h




( im 3K Iim 2x h th -
2h

h→0 ht n→0 h




Lim 3 =
3 lim hl2xth -21 -
2x th -
2 ' 2×+0-2
h
h→0 into
=
2X -2

, ⑨
Types of discontinuity :





Essential .




⑤ Removable .





qghifnq.at gtfo
'" "


.ME#ugae.f'
=3




x' Fat
'




fix F f- "' '

a
-




lim fix) DNE
Xt -4 does not exist



*
The only way to remove a
discontinuity is to assign a function value at the point of discontinuity .




⑤ Limits at
infinity :



2X -
3 lim
*
f- ( X )=2
f- (x ) Xt 't x - + as
-
-




a Lim
*
as
fcx )=2
-

x→



-




) x' I
Iim "
← *
fix )
7 fix) F
t too it
fix
-

-_ -



x→ y
y=2
- -
, - .
-



>
lim
*
It
x→
fix)= as DNE
- -


-




-
O l l l l l l t CS

-




-




-




21=-7
V




HOMEWORK :


*
Solve the basic derivative rule :
using



F- X1 3×3 Ix't 5×-8 Ex 2 5×2-531×+9 Ex Ex3:hlX)=5 # tf ¥3 -




fix) gtx)
: -
-
- : -
-
- -




f' ( x ) 9×2-83×+5
-

-



g. (x ) -

- 5×2 -
21+9-5×-1 hlx) -
- 5 Ix
-
7×-1+8×-2 -
- 3




'
( X) 10x 55+5×-2 n' 1×1=7×-2 16×-3+21×-4
g.
-
- -
-




'
(x) tox Bt # n' ( ) ¥2 ¥t¥
g. x
- -
- -
- -

Los beneficios de comprar resúmenes en Stuvia estan en línea:

Garantiza la calidad de los comentarios

Garantiza la calidad de los comentarios

Compradores de Stuvia evaluaron más de 700.000 resúmenes. Así estas seguro que compras los mejores documentos!

Compra fácil y rápido

Compra fácil y rápido

Puedes pagar rápidamente y en una vez con iDeal, tarjeta de crédito o con tu crédito de Stuvia. Sin tener que hacerte miembro.

Enfócate en lo más importante

Enfócate en lo más importante

Tus compañeros escriben los resúmenes. Por eso tienes la seguridad que tienes un resumen actual y confiable. Así llegas a la conclusión rapidamente!

Preguntas frecuentes

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

100% de satisfacción garantizada: ¿Cómo funciona?

Nuestra garantía de satisfacción le asegura que siempre encontrará un documento de estudio a tu medida. Tu rellenas un formulario y nuestro equipo de atención al cliente se encarga del resto.

Who am I buying this summary from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller LittleEinsteinTutors. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy this summary for 5,99 €. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

45,681 summaries were sold in the last 30 days

Founded in 2010, the go-to place to buy summaries for 14 years now

Empieza a vender
5,99 €
  • (0)
  Añadir