100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada
logo-home
Summary Mathematics 144 Summaries 8,28 €
Añadir al carrito

Resumen

Summary Mathematics 144 Summaries

1 revisar
 13 veces vendidas
  • Grado
  • Institución
  • Book

A neatly digitally summarised document covering all the work done in semester 2: weeks 1 -12, including linear algebra and calculus. (Ends with 10.5 Conic Sections) - all work needed for the A2 and A1 exams.

Última actualización de este documento: 2 año hace

Vista previa 4 fuera de 80  páginas

  • No
  • All the content covered in semester 2, from weeks 1 to 12.
  • 12 de septiembre de 2022
  • 23 de octubre de 2022
  • 80
  • 2022/2023
  • Resumen

1  revisar

review-writer-avatar

Por: jessicafarley • 4 meses hace

avatar-seller
Week 1 : Revision



4.5 . Substitution Rule


/ fcgcx ) ) gllxldx =
/flu) du
if 4=41×1 is a differentiable function




set u to
your inner function






when e is involved set u = the power of e
,



differentiate U




manipulate so that function cancels out

" "

remember + C




6. 1 . Inverse functions


only one lone output for each input )

one -
to -





horizontal line -
test




f- ( x ) reflection
'
f- ( y ) = x
y
= in ↳= x




if is with domain A and B then f-
'
has domain B and
f l l
range range A
• -




,




cancellation
equations
"
f- ( fix ) ) = x V ✗ C- A ( Domain of inner function )


f- ( f-
'
( x)) = X U KE B




Find the inverse :


① Let
y
= f- ( x )


② Find domain and range of fcx )

③ Solve for have find the
equation x i. t.co .

y ( sometimes
you to
square )
④ Swap x and
y to find
'
f- ( x )

, Derivative of an inverse function

* If f is a 1-1 continuous function, then f-
'
is also continuous


slope of inverse
f at a =
IF
f is an odd function :


9
'

(
f 1)
-


I
(a) = = I

f- (b)
'
f ' ( fila ) ) fcx ) - DX = 0


I



f-
'

f- (b) = a (a) = b




6. G. Inverse trig functions



trig functions are not 1- I



we must restrict their domains to make them 1- I




Arcsine


sin
_ '

✗ =
y siny=x and
-




y≤ ¥
sin
_ '
Csinx ) = ≥ for
-

É ≤ ✗ ≤ ¥
'
for ≤ 1
sin ( sin
_

-1 ≤ ✗
x ) = x


Input domain :
-
I ≤ ✗ ≤ i


sink =
y




±z
I

'



off
I
( sin
-



x ) =


,
1- ✗ 2 -




-
I




Arccos

'
IT for
-


◦ ≤ x ≤ cos -1 ≤
cosx =
y ,
y = x
y ≤ 1


'
( COSI ) for IT
-



COS = x 0 ≤ ✗ ≤



COS ( COS
'
) for
_


x = x
-
I ≤ × ≤ I



( cos
- '
x ) = -
1 -
I < x e I
;

I 2
-


,Arctan


tan
- '
✗ =
y any
+ =x and
-
¥ <
y < E
( tan
_
'
X) =
I

, 1-1×2




method
triangle
I
' '
Prove sin cos =
_ -



e. ✗ x
g. + 2



¥ Iz
-


' ≤ a ≤
Let
_


a =
sin x
;

✗ Sina
b
=




,
×
b=
'
Let b
-


cos X O ≤ ≤ it


✗ =
costs
a


1- ✗ 2




at b + ¥ =
IT



i. at b =
¥
"
b = b
"
/ nb




Integration

a

:-/
a
"
DX =
Inca )




( É)
/
I

xz+az
=
ta - arctan
/{ du
= 81h ( IU ) )


/¥ dx = In (1×1)

, week 2




6.7 .
Hyperbolic functions

I

" "
sinhx = e -
e- cosechx =
sinhx
2



I

' "
coshx = e' + e- sechx =
cosh >c
2



COSHX
tanhx = sinhx [ ◦ thx =
sinhx
coshx




Hyperbolic identities

cosh >
sin C -
x > = -
sinhx cos he -
x) = coshx sinhcxty ) = sinh >
ccoshy
+
csinhy
coshzx sinhzx cosh >
cushy
= I 1- tanhzx = sech 2x coshlxty ) = +
sinhxsinhy
-




sinhx
"
coshx + =
e Sinha>c) = Zsinhsccosh >c
of
Properties infinity
as ± K = as

Derivatives of Hyperbolic functions
+ A = A


ddxlcosechx)
d
d-✗ ( sinh >c) =
coshx =
-

cosechxcothx
d d
d-
× ( cosh >c) = sin hide fsechx ) =
-

sechxtanhx A. ( IK ) = ± as if k≠O

d
dI ( tanh >c) SECHZX A A
( coth >c) cosechzx
=
= -

= -




= 0 if k≠o
6.8 .
Indeterminate forms and L' Hopital 's Rule

¥ = ± as if k≠O

if k≠o
8- = indeterminate form
ago =
indeterminate form
= as




% =
indeterminate form I = indeterminate form } y=1n . . .
¥ = 0



9- = A



as
form
=

indeterminate

}
as as :
write
quotient
-


as a


A. 0 = indeterminate form

Los beneficios de comprar resúmenes en Stuvia estan en línea:

Garantiza la calidad de los comentarios

Garantiza la calidad de los comentarios

Compradores de Stuvia evaluaron más de 700.000 resúmenes. Así estas seguro que compras los mejores documentos!

Compra fácil y rápido

Compra fácil y rápido

Puedes pagar rápidamente y en una vez con iDeal, tarjeta de crédito o con tu crédito de Stuvia. Sin tener que hacerte miembro.

Enfócate en lo más importante

Enfócate en lo más importante

Tus compañeros escriben los resúmenes. Por eso tienes la seguridad que tienes un resumen actual y confiable. Así llegas a la conclusión rapidamente!

Preguntas frecuentes

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

100% de satisfacción garantizada: ¿Cómo funciona?

Nuestra garantía de satisfacción le asegura que siempre encontrará un documento de estudio a tu medida. Tu rellenas un formulario y nuestro equipo de atención al cliente se encarga del resto.

Who am I buying this summary from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller miaolivier16. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy this summary for 8,28 €. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

45,681 summaries were sold in the last 30 days

Founded in 2010, the go-to place to buy summaries for 15 years now

Empieza a vender
8,28 €  13x  vendido
  • (1)
Añadir al carrito
Añadido