100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada
logo-home
Single Math A 7,69 €
Añadir al carrito

Notas de lectura

Single Math A

 1 veces vendidas
  • Grado
  • Institución
  • Book

Digital download I have achieved a first-class in Math by taking these notes. First-year uni math notes in SMA for those who struggle through the course or for uni applications interview. Hope can help you pass the exam Cheers

Vista previa 4 fuera de 97  páginas

  • 15 de octubre de 2022
  • 97
  • 2021/2022
  • Notas de lectura
  • Professor
  • Todas las clases
  • Desconocido
avatar-seller
, Topic I
1. 1 Real numbers ,
Algebraic manipulations
Number field :




Real numbers ,
IR : All numbers I e.
go.li
2 it , } ,
- I - . .

I




Integers , 2 : positive ,
negative integers
and zero f- . .
-3 ,
-2 ,
-1
,
a , I ,
2,3 - . .


}

Non -



negative integers , IN :
positive integers
and zero
f o
,
I , 2,3 . - .




}
Operations :





Add att defined for
- subtract a- to all red a and I

at
Multiply





-

Division £ defined for all real a and b- ,
except
tota


Comparisons :




acts a > hi , ast A7T att
, , ,




shorthand :


"


a = a. a -
a - . .
a for all real a
,
HE IN and N 70
-
n times


. [ =/ for a f- 0

X x-

y
As when a -_ a
I = a

a× f- is undefined .




Ix I
?
=



× '
i. do is undefined yet

-




i. = a =
I


Summations
I -2
, proof by induction

Summations :



¥2 nlhtll 12h41 )
'

j =


Mtn ) 1+2+3-1 .tn ? ,
i. = . .

6

M In ) = 1+2+3-1 . . . th n
hlhtl )
I
Mint htlh 1) 1- In -21 -1 + I j =

2
j= ,
= -
.
. .




a. Min) = Intl ) -14+111-4+1 ) + . . . -1 ( htt )

n times

hlhtl )
i. Min ) =

2



z
Summation Notation :


II
.




flk )

fill + f- 121 + f- 13 ) + . . .
+ flkl is written as ,



.
More
generally we define , for a ,t integer acts

II. aflkl =
flat + flat 't + . .
.
+ fitt

properties
• :



of label
Independent
:
1




eflkl =
IIe till =
¥Ea f- I

' '

k l called
, , is a
dummy
hmm
index


② off
peel terms :




II.afoot =
flkl + fitt

=
flat -1 . .
.
+ fib -
It

3 We can shift the label :




II. f- 1kt =
II ,
fit - thi ) =
f Im -
a) = final + flattest . . .




+ f- latte -
a)
= flat -14111 . - .
=
f- 155-55) + fltb-551
+ f- 114 f- . -

tf 165-55)

, 22
j⇐
' '


't
'


Example pin ) I + + t n
j
=
• : = o . . .




works for
only
Proof by induction :
integers

Suppose we want to
prove that same result is true for all +
integers ,
h .
If it can be shown that the



result holds for n=I and also that ,
for all N71 , if the result is true for n = N , then it must also


be true for n = Ntl , then follows that the result is true for all
positive n



Inland )
:=€=a for
'
Qin )
k equal Intl )
negative integer
=

Prove that pin ) is to :
any non n
Question
-
.

:




i. = stands for a
definition
0
' z


when n =
0 pie) = [ok = a = a



Q a) =
to 1410+1110-11 ) = 0 i. 1710 ) =
Q lol i . True for h= 0


i. Pll) = QU )


True for h =/

Assume it is true for n=N

i. PIN ) = QIN )

when n= Ntl when u = Ntl

PINHI = ET bi
① 1µg =
LNHI 121*1+11 IN -11+1 )
k= I
'
6
= FINI t Will =
to IN -11 ) 12N -13 ) IN -14
'

=
QINI + IN -111
2

=
IN IZNHIINH ) 1- IN -111 i. PINT ) = QI Ntl)

= '
Ntl ) ( IN lsNH ) + IN-111 ) since true for n=o ,
then it is t ru e for all IN

=
INH ) I NL2N-1II -161N -111 )
=
to INH ) I ZN2-1TN -16 )
= to IN -11112 # 3) IN -12 )


General template
:



all E IN
Claim f- In )= gin ) for n



proof : .
show f- lot =
gio )
-

show that for n
any
i




if f- In ) =
gun) ,
then final =
glntl )



1.3 Binomial theorem

Binaural coefficients :




i.
Definition Factorial function : n ! = 1×2×3 × . . . X In 2)
-
X In -
1) X h ,
h E IN
ht
0 ! =
I In -11 ! =
n i . It -11 ! = = I = 0 !


Factorial function is
only defined for -heintegemm






Factorial function is never zero




Binomial coefficient
2.
Definition :



For all h .
k E IN , h 7k ,

-
h

(1) with)
I


Ck
'

n choose k =

!
=




> .
Pascal 's triangle :




.to/--lnn/-- I

n!
proof :
(2) =
d. in -4 ! =
I
h !
(1) =

h ! In -
n ) !
=
I

i. 141=111






properties of Pascal 's
triangle
:





symmetry :
121=11 )

, h !
proof :
II ) =

k :( n -
KI !


(Ik )
n !
=

i. in -
ntkl !
=

4-kl ! k !
= II )

② I 1) = III ) + 1hL ) ,
For all in > k -
the number is the sum of two numbers above

k > o


In-1 ) ! In-11 !

Proof :
RHS =

µ -11 ! In -1 htt ) !
-
X k ! In -
I -
kl !


In -11 ! In -

1) !
As In k ) ! (n k-11 ! In k )
=
+
-
-
=
1k -11 ! 1h kl ! k ! In tkl !
-


- -




In -11 ! In -11 !
= +

1k -11 ! In -
tell ! Intel klk-11 ! In k -11 ! -




kin -11 ! + In-11 ! In k ) -


=



klk-11 ! In k -11 !
-
In - k)

= h In -11 !

talk-11 ! In -
k -
1) ! In k -
)

!
%)
n
=

In )
=
I box hand
k ! - k
II
-
The little on the
right
'
of proof
'
side means end



Binaural Theorem :




i. Binaural Theorem :
For any non -


negative integer IN
, nza


-1121
"
171 't -111)a" th
"

't
" " " ' "

(att ) =
a + a a + . . .
t . .
. + to

=
If (1) a
"-
kfk
-
Binaural coefficient

Question :
Express (text 't IHX 15 as a
polynomial in ×

'
HX15 5) 1+5×+10×2 -110×7+5×4 -1×5 )
'

4- X ) + I =
(I -5×+10×2 - lax -15×4 -
+ + I


= 21 It 10×2+5×4 )

induction
proof by
:
:
a.




• when n = 0
,




II. "kt_
'


4th ) =
I
,
IL) a 111111111=1

True for h = 0



Just to be sure
,




when u =/


(att )
'
= att ,
LEO 1k ) atktk =
4) a
'

b-
°

+ 11 )a°t
'




=
att

i. True for n= I


Assume it is true for h=n


¥
k
1k ) and
"
i. lattt =

.
b-


sub n = h t I
n
""

(att ) = late ) ( att )
=
4th ) ¥411)a"ktk expand the bracket
get
¥4111 ⇐ 111 antebkti
"'
th
"
-




+

+In-n+IfI
= a



k
an "tk
k
>
LEO (1) 12,1 "zk
"
-
-
=
+
a
-
shift the variables

the same

€ 1L) and € 11,1 and"zk+
"" " k htt
↳ > =
a + b- + b-
,
2 ,
"'

EI,[ (1) II ) )
""
*
= a
"'
+ + ,
an thet

property ②
111=1111 -11nF )

) and"zk
'

£2
htt
= and +
,
I + b-


II 1h11 anti kzk
-


=

Los beneficios de comprar resúmenes en Stuvia estan en línea:

Garantiza la calidad de los comentarios

Garantiza la calidad de los comentarios

Compradores de Stuvia evaluaron más de 700.000 resúmenes. Así estas seguro que compras los mejores documentos!

Compra fácil y rápido

Compra fácil y rápido

Puedes pagar rápidamente y en una vez con iDeal, tarjeta de crédito o con tu crédito de Stuvia. Sin tener que hacerte miembro.

Enfócate en lo más importante

Enfócate en lo más importante

Tus compañeros escriben los resúmenes. Por eso tienes la seguridad que tienes un resumen actual y confiable. Así llegas a la conclusión rapidamente!

Preguntas frecuentes

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

100% de satisfacción garantizada: ¿Cómo funciona?

Nuestra garantía de satisfacción le asegura que siempre encontrará un documento de estudio a tu medida. Tu rellenas un formulario y nuestro equipo de atención al cliente se encarga del resto.

Who am I buying this summary from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller BYRZ. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy this summary for 7,69 €. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

45,681 summaries were sold in the last 30 days

Founded in 2010, the go-to place to buy summaries for 15 years now

Empieza a vender

Vistos recientemente


7,69 €  1x  vendido
  • (0)
Añadir al carrito
Añadido