100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

cours de thermodynamique

Puntuación
-
Vendido
-
Páginas
24
Subido en
24-12-2022
Escrito en
2021/2022

cours de thermodynamique chapitre 2: Echanges d’énergie : travail, chaleur, énergie interne

Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
24 de diciembre de 2022
Número de páginas
24
Escrito en
2021/2022
Tipo
Notas de lectura
Profesor(es)
Mohcen
Contiene
Todas las clases

Temas

Vista previa del contenido

CHAPITRE II : Echanges d’énergie : travail, chaleur, énergie interne


II. 1. Introduction

Le but de la thermodynamique est l’étude des propriétés des systèmes et leurs évolutions en
fonction des échanges d’énergie avec le milieu extérieur.
Un système peut échanger de la masse et de l’énergie avec le milieu extérieur, alors son état
thermodynamique change par gain ou par perte de masse ou d’énergie. On dit que le système
subit une transformation qui entraine une variation des variables d’état.
Chaque système a un certain contenu en énergie sous forme d’énergie mécanique (cinétique
ou potentielle) à l’échelle microscopique.


II. 2. Energie interne (U)

L’énergie interne d’un système est son contenu en énergie pour ce système. Chaque système
(solide, liquide ou gazeux) est une collection d’objets tels des atomes, des molécules,…etc.
Ces particules à l’échelle microscopique sont toujours animées de mouvements incessants et
aléatoires (agitation moléculaire); dite vibration pour les solides et agitation thermique pour
les liquides et les gaz.
A ces mouvements microscopiques est associé de l’énergie cinétique Eci pour chaque
particule. De plus, entre ces atomes peuvent exister des forces d’interaction (attraction et
répulsion) aux quelles on associe une énergie potentielles Epi pour chaque particule.
A l’échelle microscopique, l’énergie interne (U) du système est définie comme la somme
algébriques des énergies cinétiques Eci et potentielles Epi, de toutes les particules formant le
système.


𝐔= ∑ 𝑬𝒄𝒊 + ∑ 𝑬𝒑𝒊




II. 2. 1. Propriétés de l’énergie interne

A l’équilibre thermique, l’énergie interne (U) :
 C’est une énergie exprimée en Joule [J] ou en [cal].
 Elle a une valeur bien définie.
 C’est une fonction d’état (qui ne dépend que l’état thermodynamique initial et final).

13

,L’énergie interne caractérise le niveau énergétique du système thermodynamique. L’énergie
interne d’un système peut varier suite à des échanges d’énergie avec le milieu extérieur. Les
énergies sont principalement échangées sous forme de chaleur (Q) et de travail (W).


II. 3. La Chaleur (Q)

La chaleur est une forme spéciale de l’énergie :
 C’est une énergie exprimée en [J] ou en [kcal].
 Elle est échangée à l’échelle microscopique sous forme désordonnée par agitation
moléculaire (c’est-à-dire par choc entre les molécules en mouvement.
 Elle s’écoule toujours d’une source chaude vers une source froide.
 La chaleur n’est pas une fonction d’état, c'est-à-dire dépend du chemin suivi.


On peut définir deux types de chaleurs distinctes:



II. 3. 1. Chaleur sensible

Elle est liée à une variation de température (∆T) du système à la suite d’un réchauffement ou
d’un refroidissement de ce dernier. Elle est proportionnelle à la quantité de la matière (masse
ou nombre de moles) et à la différence de température (∆T).


 Pour une transformation infinitésimale:

𝑑𝑄 = 𝑚 𝐶 𝑑𝑇 ou 𝑑𝑄 = 𝑛 𝐶 𝑑𝑇


Où :

m : La masse de la matière du système.
n : Le nombre de moles du système.
C : La capacité calorifique massique ou molaire de la matière exprimée
respectivement en [J. Kg -1. K-1] ou [J. mol -1. K-1]. Elle peut être à pression constante
(Cp) ou à volume constant (Cv)




14

,  Pour une transformation finie :

La chaleur Q échangée lors d’une transformation finie entre l’état (1) et l’état (2) est :



𝑄= 𝑑𝑄 = 𝑚 𝐶 𝑑𝑇 = 𝑚 𝐶 𝑑𝑇 = 𝑚 𝐶 (𝑇 − 𝑇 ) = 𝑚 𝐶∆𝑇


Si on considère que la capacité calorifique du système est indépendante de la
température. Dans le cas contraire, C = f (T) on aura :



𝑄= 𝑑𝑄 = 𝑚 𝐶 𝑑𝑇 = 𝑚 𝐶 𝑑𝑇



On remplace la formule de la capacité puis on fait l’intégrale complète.


II. 3. 2. Chaleur latente

La quantité de chaleur latente est la chaleur nécessaire pour qu’une quantité de matière puisse
changer son état physique à une température constante. Elle est proportionnelle à la quantité
de matière (masse ou nombre de moles) et la valeur de la chaleur latente liée à ce changement
d’état physique.


𝑄 = 𝑚. 𝐿 ou 𝑄 = 𝑛. 𝐿


Pour chaque type de matière, il existe trois types de chaleurs latentes liées aux six
changements d’état physiques ( Ls, Lv et Lf).

Où Ls, Lv ou Lf : est la chaleur massique ou molaire associée respectivement à une
sublimation, vaporisation ou fusion.




15
5,27 €
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
Mohcen

Conoce al vendedor

Seller avatar
Mohcen École Polytechnique
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
2 año
Número de seguidores
0
Documentos
5
Última venta
-

0,0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes