100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada
logo-home
Summary dynamics 20,49 €   Añadir al carrito

Resumen

Summary dynamics

 4 vistas  0 veces vendidas

Summary of 11 pages for the course Ingenieria Informatica at ULL (dynamics)

Vista previa 2 fuera de 11  páginas

  • 3 de marzo de 2023
  • 11
  • 2022/2023
  • Resumen
Todos documentos para esta materia (1)
avatar-seller
azanata1
The angle between two vectors
P1
8
● As you work through the proof in this section, make a list of all the results that
you are assuming.




The angle between two vectors
To find the angle θ between the y
B
two vectors (b1, b2)

→ A
OA = a = a1i + a2j
(a1, a2)
and
a b


OB = b = b1i + b2j

start by applying the cosine rule to θ

triangle OAB in figure 8.21. O x
OA 2 +OB2 – AB2 Figure 8.21
cos θ =
2OA × OB

→ 
→ 

In this, OA, OB and AB are the lengths of the vectors OA, OB and AB, and so

OA = | a | = a 12 + a22 and OB = | b | = b 12 + b22 .


The vector AB = b − a = (b1i + b2j) − (a1i + a2j)
= (b1 − a1)i + (b2 − a2)j
and so its length is given by

AB = | b − a | = (b1 – a1)2 + (b2 – a2)2.

Substituting for OA, OB and AB in the cosine rule gives
(a12 + a 22) + (b 12 + b 22) – [(b1 – a1)2 + (b2 – a2)2]
cos θ =
2 a 12 + a 22 × b 12 + b 22
a 2 + a 2 + b 12 + b 22 – (b 12 – 2a1b1 + a12 + b 22 – 2a2b2 + a 22 )
= 1 2
2a b
This simplifies to
2a1b1 + 2a2b2 a1b1 + a2b2
cos θ = =
2 a b a b
The expression on the top line, a1b1 + a2b2, is called the scalar product (or dot
product) of the vectors a and b and is written a . b. Thus

cos θ = a . b .
a b
This result is usually written in the form
271
a . b = | a | | b | cos θ.

, The next example shows you how to use it to find the angle between two vectors
P1 given numerically.

8
Find the angle between the vectors   and 
3 5
.
 –12
EXAMPLE 8.11
 4
Vectors




SOLUTION

 3
Let a=  ⇒ | a | = 32 + 42 = 5
 4
 5
b= ⇒ | b | = 52 + (–12)2 = 13.
 –12
and


The scalar product
 3   5  = 3 × 5 + 4 × (−12)
 4  .  –12
= 15 − 48
= −33.
Substituting in a . b = | a | | b | cos θ gives

−33 = 5 × 13 × cos θ
cos θ = –33
65
⇒ θ = 120.5°.


Perpendicular vectors

Since cos 90° = 0, it follows that if vectors a and b are perpendicular then
a . b = 0.
Conversely, if the scalar product of two non-zero vectors is zero, they are
perpendicular.

 2  6
EXAMPLE 8.12 Show that the vectors a =   and b =   are perpendicular.
 4  –3 

SOLUTION

The scalar product of the vectors is

 2  6
a.b =   . 
 4  –3 
= 2 × 6 + 4 × (−3)
= 12 − 12 = 0.
Therefore the vectors are perpendicular.
272

Los beneficios de comprar resúmenes en Stuvia estan en línea:

Garantiza la calidad de los comentarios

Garantiza la calidad de los comentarios

Compradores de Stuvia evaluaron más de 700.000 resúmenes. Así estas seguro que compras los mejores documentos!

Compra fácil y rápido

Compra fácil y rápido

Puedes pagar rápidamente y en una vez con iDeal, tarjeta de crédito o con tu crédito de Stuvia. Sin tener que hacerte miembro.

Enfócate en lo más importante

Enfócate en lo más importante

Tus compañeros escriben los resúmenes. Por eso tienes la seguridad que tienes un resumen actual y confiable. Así llegas a la conclusión rapidamente!

Preguntas frecuentes

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

100% de satisfacción garantizada: ¿Cómo funciona?

Nuestra garantía de satisfacción le asegura que siempre encontrará un documento de estudio a tu medida. Tu rellenas un formulario y nuestro equipo de atención al cliente se encarga del resto.

Who am I buying this summary from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller azanata1. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy this summary for 20,49 €. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

45,681 summaries were sold in the last 30 days

Founded in 2010, the go-to place to buy summaries for 14 years now

Empieza a vender
20,49 €
  • (0)
  Añadir