100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada
logo-home
Samenvatting: Data-Analyse 6,48 €   Añadir al carrito

Resumen

Samenvatting: Data-Analyse

 53 vistas  4 veces vendidas
  • Grado
  • Institución
  • Book

Dit is een samenvatting van het vak data-analyse. Het bestaat voornamelijk uit een samenvatting van de leerstof van de relevante hoofdstukken uit het boek. Dit is aangevuld met informatie uit de hoorcolleges en ~80% van de SPSS instructies die nodig zullen zijn.

Vista previa 3 fuera de 26  páginas

  • No
  • Hoofdstuk 5, 19 t/m 24
  • 29 de enero de 2024
  • 26
  • 2023/2024
  • Resumen
avatar-seller
Chapter 5 – Pairs of Variables

5.1 : Scatter plot, covariance and correlation

Dependent variable (usually Y) = topic of investigation
Independent variable (usually X) = cause of variation

Scatterplot -> used to get a visual idea of the relationship between two (quantitative) variables by
displaying all the (x,y) pairs
Population/Sample cloud = all the dots resulting from the (x,y) pairs

Different possible relationships:
1. Positively linearly related -> best fitting straight line is increasing
2. Negatively linearly related -> best fitting straight line is decreasing
3. Quadratic relationship -> results seem to follow a mountain/valley based parabolic
4. Logarithmic relationship -> results variate wildly for low values but then seem to even out
5. No relationship

Covariance -> measures the degree of linear relationship between y and x
Formula:
N
1
Population covariance: σ X ,Y = ∑ (x −μ )( y −μ y )
N i =1 i x i
n
1
Sample covariance: s X ,Y = ∑ ( x −x )( y i− y )
n−1 i=1 i
-> the reason for ‘n-1’ instead of just ‘n’ in the sample covariance is that it is better at estimating the
population covariance
-> replacing all the y and Y by x and X will result in the formulas for the population variance and the
sample variance

Short cut formula:
N
1
Population covariance: σ X ,Y = ∑ x y −μ μ
N i =1 i i x y
1
Sample covariance: s X ,Y = ¿
n−1

Using the covariance has downsides. A reference point to determine whether the relationship is
strong is missing and the covariance is dependent on the dimensions of the variables

Correlation -> measures the degree of linear relationship between y and x but without the downsides
mentioned above
Formula:
σ X ,Y
Population correlation coefficient: ρ=ρ X , Y =
σ X σY
SX , Y
Sample correlation coefficient: r =r X , Y =
SX SY
-> value of both the coefficients is between (-1,1), where +1 indicates a strong positively linear

,relationship, -1 a strong negatively linear relationship and 0 no relationship (uncorrelated)

5.2 : Regression line

Regression of Y on X = the study of the dependence of Y on X
Least squares (LS) method :
1. Start with a general line with the equation: y = a + bx
2. Fill in the x and find out what values of a and b cause the least overall difference for the y values

Formulas:
S X, Y
Sample regression coefficients: b = 2 and a = y−b x
SX
S X, Y
Population regression coefficients: β 1= 2 and β 0=μ y −β 1 μ x
SX

Sample regression line: ^y =b0 +b1 x (also called: prediction line)
Population regression line: y=β 0 + β 1 x
-> b0/ꟗ0 = the intercept
-> b1/ꟗ1 = the slope
-> sample regression line passes through ( x , y )
-> population regression line passes through ( μ x , μ y )

Interpolation = if a new ‘x’ value is within the range of existing ‘x’ values, predictions can be trusted
Extrapolation = if a new ‘x’ value is outside the range of existing ‘x’ values, predictions can’t be
trusted

Residuals/Errors = the difference between the y-values and the regression line
-> shows the concentration of y-values around the regression line
-> the sum of residuals will always be 0 (otherwise the regression line is not the best fitting line)

Formulas:
Residual/Error: e i= y i− ^yi
n n
Sum of squared errors: SSE=∑ ( y i− ^y i ) =∑ e i
2 2

i=1 i=1
-> the smaller the SSE, the better the predicting performance of the regression line

5.3 : Linear transformations

Transforming a variable ‘X’ can be done using the formula: Y = a + bX
-> this has implications for certain statistics, summarised below:


Population dataset Sample dataset
Location μ y =a+b μ x y=a+b x
μ ymedian =a+b μ xmedian y median =a+ b x median
2 2 2 2 2 2
Variation σ Y =b σ X sY =b s X
σ Y =|b|σ X sY =|b|s X

, Transforming both variables ‘X’ and ‘Y’ can be using two formulas: V = a + bX and W = c + dY
-> this has implications for certain statistics, summarised below:


Population dataset Sample dataset
Covariance σ V ,W =bd σ X ,Y sV , W =bd s X ,Y
Correlation coefficient If bd >0 : ρV , W = ρX ,Y r V ,W =r X , Y
If bd <0 : ρV , W =− ρX , Y r V ,W =−r X , Y

5.4 : Relationship between two qualitative variables

Covariance and correlation coefficient are useless when comparing two qualitative variables
-> instead we use contingency/cross-classification tables, they give the joint frequencies of the data

Los beneficios de comprar resúmenes en Stuvia estan en línea:

Garantiza la calidad de los comentarios

Garantiza la calidad de los comentarios

Compradores de Stuvia evaluaron más de 700.000 resúmenes. Así estas seguro que compras los mejores documentos!

Compra fácil y rápido

Compra fácil y rápido

Puedes pagar rápidamente y en una vez con iDeal, tarjeta de crédito o con tu crédito de Stuvia. Sin tener que hacerte miembro.

Enfócate en lo más importante

Enfócate en lo más importante

Tus compañeros escriben los resúmenes. Por eso tienes la seguridad que tienes un resumen actual y confiable. Así llegas a la conclusión rapidamente!

Preguntas frecuentes

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

100% de satisfacción garantizada: ¿Cómo funciona?

Nuestra garantía de satisfacción le asegura que siempre encontrará un documento de estudio a tu medida. Tu rellenas un formulario y nuestro equipo de atención al cliente se encarga del resto.

Who am I buying this summary from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller joesvanderstok. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy this summary for 6,48 €. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

45,681 summaries were sold in the last 30 days

Founded in 2010, the go-to place to buy summaries for 14 years now

Empieza a vender
6,48 €  4x  vendido
  • (0)
  Añadir