100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada
logo-home
Samenvatting Lineaire regressie 4,49 €
Añadir al carrito

Resumen

Samenvatting Lineaire regressie

 1 veces vendidas
  • Grado
  • Institución

Zowel bivariate als multipele regressie wordt hier besproken.

Vista previa 2 fuera de 7  páginas

  • 29 de diciembre de 2018
  • 7
  • 2018/2019
  • Resumen
avatar-seller
Hoofdstuk 7: Bivariate lineaire
regressie
Line of best ft
Bij regressie gaat het erom een variabele y op interval niveau zo goed mogelijk te beschrijven of te
voorspellen op grond van één of meer verklarende variabelen (de predictoren). Bij éénvoudige
lineaire regressie wordt bivariaat de lineaire tendens van de scaterplot tussen x en y ingeschat op

basis van line of best ft . (met de ingeschate data van de oututvariabele, a de
intercept en b de richtngscoëfciënt van de rechte. STEEKPROEF)

Binnen de scaterplot liggen de ruwe steekproefdata (y) ten opzichte van de ingeschate data (die
gekoppeld zijn aan de line of best ft) op een zekere afstand genoemd: e i = yi – ^y i.

Idealiter worden de residuën tot de ‘line of best ftt zo klein mogelijk gehouden. Dit gebeurt op basis
van de least squares methode waarbij de kwadratensom van de residuën geminimaliseerd wordt.

.

Voor de regressierechte ^y i = a + b . xi zijn op basis van de kleinste kwadratenmethode b en a:


- b=
- a=

^y i = a + b . xi is een ‘line of best ftt gekoppeld aan de steekproefdata. De kwantfcate van de relate
tussen xi en ^y i gebeurt door de richtngscoëfciënt b van de lineaire regressie. De b-coëfciënt moet
gelezen worden als

- ‘Wanneer de xi waarde stjgt met een eenheid dan stjgt de gekoppelde ^y i waarde met b-
eenhedent

Voor de populate is de regressievergelijking y 1= β 0 + β 1.xi + ε i. a en b zijn inschatngen van beta0 en
Beta 1 waarvoor betrouwbaarheidsintervallen worden berekend. De standaardfouten van de
inschatngen voor β 0 (SE(a) genoemd) en voor β 1 (SE(b) genoemd zijn:




Predictie
^y
De standaardfout van een ingeschate i obv een gegeven waarde xi is: . Dit
betekent dat SE( ^y i) kleiner wordt naarmate de xi dichter bij het gemiddelde ligt. Dit betekent


1

, omgekeerd dat men bij waarden van x i die verder van het gemiddelde gepositoneerd eerder
terughoudend moeten zijn qua predicte.

ANOVA
De volgende vraag is op de regressie statstsch signifcant is, i.a.w. een meerwaarde heef dan y i in te
schaten obv het gemiddelde. Antwoord: SST = SSregressie + SSresidu. Waarbij:




Hieruit kunnen we de MS berekenen met: MS regressie = SSregressie/1 en MSerror = MSerror / n-2.

MSregressie
De F-score: F = . Deze wordt getest binnen de H0: b = 0 en H1: b≠ 0 binnen een F-distribute
MS error
met 1 en n-2 vrijheidsgraden.

Determinatiecoëfficiënt
De correlatecoëfciënt werd gedefnieerd als: .


Gegeven dat b= dan is de determinantecoëfciënt r een maat voor de
variantie van de outputvariabele die verllaard wordt door de regrressielinn.

Voorbeeld:




Buiten descripte en predicte wordt de regressie ook gebruikt binnen de ANCOVA-procedure ter
correcte voor een covariaat.

Standardized coëfficiënt
Bij de standarized regressiecoëfciënt BETA, wordt de regressie gestandaardiseerd naar een context
waarbij de variantes van de AV en OV beide 1 zij. Het zijn dus eigenlijk niet de b-coëfciënten die
worden gestandaardiseerd maar wel de regressievariabelen. i.e. gepositoneerd t.o.v. het
gemiddelde en in eenheden van standaarddeviate.

- ! beta niet te verwarren met de theoretsche beta coëfciënten in de POPULATIEregressie

In SPPS is b gegeven als B(Unstandardized Coefcient)

De standarized coëfciënt Beta wordt afgelezen als een stiging van één standaarddeviate in xi doet
yi met Beta standaarddeviates stigen.

In de toepassing betekent dit dat een verhoging van 1 SD in jaren de BP doet stjgen met 0,696 SD.
Waar de unstandardized coefcient B een prediciteve waarde bezit binnen de regressievergelijking


2

Los beneficios de comprar resúmenes en Stuvia estan en línea:

Garantiza la calidad de los comentarios

Garantiza la calidad de los comentarios

Compradores de Stuvia evaluaron más de 700.000 resúmenes. Así estas seguro que compras los mejores documentos!

Compra fácil y rápido

Compra fácil y rápido

Puedes pagar rápidamente y en una vez con iDeal, tarjeta de crédito o con tu crédito de Stuvia. Sin tener que hacerte miembro.

Enfócate en lo más importante

Enfócate en lo más importante

Tus compañeros escriben los resúmenes. Por eso tienes la seguridad que tienes un resumen actual y confiable. Así llegas a la conclusión rapidamente!

Preguntas frecuentes

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

100% de satisfacción garantizada: ¿Cómo funciona?

Nuestra garantía de satisfacción le asegura que siempre encontrará un documento de estudio a tu medida. Tu rellenas un formulario y nuestro equipo de atención al cliente se encarga del resto.

Who am I buying this summary from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller emiliea. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy this summary for 4,49 €. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

45,681 summaries were sold in the last 30 days

Founded in 2010, the go-to place to buy summaries for 15 years now

Empieza a vender

Vistos recientemente


4,49 €  1x  vendido
  • (0)
Añadir al carrito
Añadido