Quantitative Economics and Econometrics (ECON0019) (ECON0019)
Resumen
ECON0019 (Quantitative Economics and Econometrics) Term 2 Summary - UCL Economics BSc Second Year
85 vistas 0 veces vendidas
Grado
Quantitative Economics and Econometrics (ECON0019) (ECON0019)
Institución
University College London (UCL)
Book
Introductory Econometrics
Summary of Term 2 taught in ECON0019 (Year 2021/2022)
Detailed notes from lecture notes, textbooks and other materials.
Topics covered include: 1) Potential Outcomes and Experiments, 2) Instrumental Variables I, 3) Instrumental Variables II, 4) Simultaneous Equations Models, 5) Limited Depend...
Test Bank For Introductory Econometrics: A Modern Approach 7th Edition By Jeffrey M. Wooldridge
ECON0019 (Quantitative Economics and Econometrics) Term 1 Summary - UCL Economics BSc Second Year
Todos para este libro de texto (13)
Escuela, estudio y materia
University College London (UCL)
Desconocido
Quantitative Economics and Econometrics (ECON0019) (ECON0019)
Todos documentos para esta materia (2)
Vendedor
Seguir
EconEliteNotes
Comentarios recibidos
Vista previa del contenido
UNIVERSITY COLLEGE LONDON
DEPARTMENT OF ECONOMICS
Economics BSc (Econ)
Second Year – Term 2
QUANTITATIVE
ECONOMICS AND
ECONOMETRICS
ECON0019
Rodrigo Antón García
rodrigo.garcia.20@ucl.ac.uk
London, 2022
,
, Contents
Topic 1 – Potential Outcomes and Experiments. Wooldridge Chapter 2–7a and 3–
7e & Stock and Watson Chapter 13.1–13.3.
o Topic 1.1 – Econometrics of Causality and Experiments. 1
o Topic 1.2 – Randomization Based on Covariates. 6
o Topic 1.3 – Pros and Cons of Experiments in Economics. 8
Topic 2 – Instrumental Variables I. Wooldridge Chapter 15.1–15.2 & Stock and
Watson Chapter 12.
o Topic 2.1 – The Basics of Instrumental Variables. 13
o Topic 2.2 – Becoming an Instrumental Variables Pro I. 19
Topic 3 – Instrumental Variables II. Stock and Watson Chapter 13.6 and Appendix
13.2.
o Topic 3.1 – Becoming an Instrumental Variables Pro II. 24
o Topic 3.2 – Instrumental Variables in Experiments. 28
o Topic 4.1 – Supply and Demand. 32
o Topic 4.2 – The General Case. 36
o Topic 4.3 – Maximum Likelihood Estimator (MLE). 41
Topic 5 – Limited Dependent Variables I. Wooldridge Chapter 17.1 & Stock and
Watson Chapter 11.
o Topic 5.1 – Limited Dependent Variables (LDV) Content. 45
o Topic 5.2 – Binary Response Models. 46
o Topic 5.3 – The Logit and Probit Binary Response Models. 46
o Topic 5.4 – Estimation of Logit and Probit: NLLS and MLE. 48
o Topic 5.5 – Interpret the Coefficients and Measuring Marginal Effects. 51
o Topic 5.6 – Generalizing Hypothesis Test and Quality of Fit. 54
,Topic 6 – Limited Dependent Variables II. Wooldridge Chapter 17.3–17.5.
o Topic 6.1 – The Poisson Regression Model. 59
o Topic 6.2 – Truncated Regression Models. 62
o Topic 7.1 – Incidental Truncation (Sample Selection) Models. 67
o Topic 7.2 – Censored Regression Models. 73
o Topic 7.3 – The Tobit Model for Corner Solution Responses I . 76
Topic 8 – Limited Dependent Variables IV and Regression with Time Series I.
Wooldridge Chapter 17.2 and 10.1–10.3.
o Topic 8.1 – The Tobit Model for Corner Solution Responses II. 80
o Topic 8.2 – Time Series Regression Models. 87
Topic 9 – Regression with Time Series II. Wooldridge Chapter 10, and 11.1–11.3 &
Stock and Watson Chapter 15 and 16.
o Topic 9.1 – OLS Finite Sample Properties in Time Series Regressions. 90
o Topic 9.2 – Functional Forms, Dummy Variables, Trends, Seasonality. 92
o Topic 9.3 – Stationarity and Weak Dependence. 95
o Topic 9.4 – Asymptotic Properties of OLS. 97
o Topic 9.5 – Highly Persistent Time Series. 98
Topic 10 – Serial Correlation and Heteroskedasticity. Wooldridge Chapter 12 &
Stock and Watson Chapter 16.
o Topic 10.1 – Properties of OLS with Serially Correlated Errors. 101
o Topic 10.2 – Serial Correlation-Robust Inference with OLS. 104
o Topic 10.3 – Heteroskedasticity in Time Series Regressions. 106
o Topic 10.4 – Testing for Serial Correlation. 107
, Quantitative Economics and Econometrics – ECON0019 Rodrigo Antón García
ECON0019: QUANTITATIVE ECONOMICS AND ECONOMETRICS – TERM 2
Topic 1 – Potential Outcomes and Experiments. Wooldridge Chapter 2–7a and 3–
7e & Stock and Watson Chapter 13.1–13.3.
o Topic 1.1 – Econometrics of Causality and Experiments.
• Why Regressions?
Regressions estimate associations between variables (specifically, the conditional
expectation). Economists are interested in regression for various reasons, some are:
1. To predict ! from "! , . . . , "" . Actually, this is rarely used in economic research.
Prediction is not something economists, in general, are precisely interested in. This is
more an issue of traders or central banks.
2. To estimate parameters of “structural” equations. For example, the demand
elasticity in a demand equation. This is something regression is used for but not a
particular easy use of regressions. This will be discussed later in three weeks.
3. To estimate causal effects of policies, interventions, treatments. For example, of
a smaller class size on test scores; or of a job training program on future wages.
We will now center on this third application of regressions. But first, what does “causal”
mean? When/why is regression appropriate? With which controls?
• Defining Causal Effects.
In the simplest case, we are interested in evaluating an intervention or policy that has
only two states of the world: a unit is subjected to the intervention or not. In other words,
those not subject to the intervention or new policy act as a control group and those
subject to the intervention as the treatment group.
Therefore, we consider some population and assume the treatment status " is binary:
1 = if treated (e.g., a person goes through job training), 0 = if not treated.
If we then define causal effects by an abstraction called potential outcomes, for each unit
) in the population there are outcomes in both states of the world, !# and !! .
- !# = outcome without intervention.
- !! = outcome with an intervention.
- *+$ = !! − !# = causal effect (usually a random variable, may vary across units).
There are a couple of noteworthy items about the casual effect *%$ ,
- It is not observed for any unit ) because it depends on both counterfactuals.
- Second, it can be negative, zero, or positive. It could be that the causal effect is
negative for some units and positive for others.
1
Los beneficios de comprar resúmenes en Stuvia estan en línea:
Garantiza la calidad de los comentarios
Compradores de Stuvia evaluaron más de 700.000 resúmenes. Así estas seguro que compras los mejores documentos!
Compra fácil y rápido
Puedes pagar rápidamente y en una vez con iDeal, tarjeta de crédito o con tu crédito de Stuvia. Sin tener que hacerte miembro.
Enfócate en lo más importante
Tus compañeros escriben los resúmenes. Por eso tienes la seguridad que tienes un resumen actual y confiable.
Así llegas a la conclusión rapidamente!
Preguntas frecuentes
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
100% de satisfacción garantizada: ¿Cómo funciona?
Nuestra garantía de satisfacción le asegura que siempre encontrará un documento de estudio a tu medida. Tu rellenas un formulario y nuestro equipo de atención al cliente se encarga del resto.
Who am I buying this summary from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller EconEliteNotes. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy this summary for 18,52 €. You're not tied to anything after your purchase.