MIP2601 ASSIGNMENT 02..UNIQUE NUMBER 648210 DUE 12JUNE 2024 TIME 19:00
22 vistas 2 veces vendidas
Grado
MIP2601 (MIP2601)
Institución
University Of South Africa (Unisa)
MIP2601 ASSIGNMENT 02
UNIQUE NUMBER 648210
DUE 12JUNE 2024 TIME 19:00
Question 1: Geometric thinking
Read the following statement referring to Van Hiele’s Level 3: Deduction, and then answer the questions that follow.
Learners can now develop sequences of statements that logically justif...
, MIP2601 ASSIGNMENT 02
UNIQUE NUMBER 648210
DUE 12JUNE 2024 TIME 19:00
Question 1: Geometric thinking
Read the following statement referring to Van Hiele’s Level 3: Deduction, and then answer the
questions that follow.
Learners can now develop sequences of statements that logically justify conclusions. Given an
isosceles triangle for example, learners can prove that the angles opposite the congruent sides are
equal.
1.1. Clements and Batista (1994) classify Van Hiele levels from 1 to 5. Using examples, discuss the
levels 1 to 3 in detail. (6)
Van Hiele level 1 focuses on recognition. Learners at this level can identify and name geometric
shapes, but they do not understand the relationships between the shapes. For example, they can
recognize a square, but they may not understand that all sides of a square are equal.
Van Hiele level 2 involves analysis. Learners at this level can identify properties and characteristics of
geometric shapes. They can compare and classify shapes based on their properties. For example,
they can recognize that a rectangle has four right angles and opposite sides are equal.
Van Hiele level 3, as mentioned in the statement, is deduction. This is the level where learners can
develop logical sequences of statements to justify conclusions. They understand the relationships
and properties of geometric shapes and can use deductive reasoning to prove statements. For
example, they can prove that the angles opposite the congruent sides of an isosceles triangle are
equal using deductive reasoning.
In summary, Van Hiele levels 1 to 3 progresses from simple recognition of shapes to a deeper
understanding of their properties and relationships, ultimately leading to the ability to use deductive
reasoning to prove geometric statements.
1.2 Drawing from the CAPS Intermediate Phase Mathematics (Space and Shape), what does it
mean to say that the levels are hierarchical? (5)
In the context of the CAPS Intermediate Phase Mathematics, the levels in Van Hiele's theory are
hierarchical, which means that each level builds upon the understanding and skills developed in the
previous level. As learners progress through the levels, they deepen their understanding of
geometric concepts and develop more advanced reasoning and deduction skills. This progression
Los beneficios de comprar resúmenes en Stuvia estan en línea:
Garantiza la calidad de los comentarios
Compradores de Stuvia evaluaron más de 700.000 resúmenes. Así estas seguro que compras los mejores documentos!
Compra fácil y rápido
Puedes pagar rápidamente y en una vez con iDeal, tarjeta de crédito o con tu crédito de Stuvia. Sin tener que hacerte miembro.
Enfócate en lo más importante
Tus compañeros escriben los resúmenes. Por eso tienes la seguridad que tienes un resumen actual y confiable.
Así llegas a la conclusión rapidamente!
Preguntas frecuentes
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
100% de satisfacción garantizada: ¿Cómo funciona?
Nuestra garantía de satisfacción le asegura que siempre encontrará un documento de estudio a tu medida. Tu rellenas un formulario y nuestro equipo de atención al cliente se encarga del resto.
Who am I buying this summary from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller tumisomahimbye. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy this summary for 2,69 €. You're not tied to anything after your purchase.