100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada
logo-home
Exam (elaborations) APM2611 Assignment 4 (COMPLETE ANSWERS) 2024 - DUE 25 September 2024 • Course • Differential Equations - APM2611 (APM2611) • Institution • University Of South Africa • Book • Differential Equations APM2611 Assignment 4 (COMPLETE ANSWER 2,50 €   Añadir al carrito

Examen

Exam (elaborations) APM2611 Assignment 4 (COMPLETE ANSWERS) 2024 - DUE 25 September 2024 • Course • Differential Equations - APM2611 (APM2611) • Institution • University Of South Africa • Book • Differential Equations APM2611 Assignment 4 (COMPLETE ANSWER

 16 vistas  0 veces vendidas
  • Grado
  • Institución
  • Book

Exam (elaborations) APM2611 Assignment 4 (COMPLETE ANSWERS) 2024 - DUE 25 September 2024 • Course • Differential Equations - APM2611 (APM2611) • Institution • University Of South Africa • Book • Differential Equations APM2611 Assignment 4 (COMPLETE ANSWERS) 2024 - DUE 25 Septemb...

[Mostrar más]

Vista previa 3 fuera de 19  páginas

  • 12 de junio de 2024
  • 19
  • 2023/2024
  • Examen
  • Preguntas y respuestas
avatar-seller
[TYPE THE COMPANY NAME]




APM2611
Assignment
4
• Differential Equations -
APM2611 (APM2611)
tabbymwesh59@gmail.com
[Pick the date]


 University Of South Africa

,[Type the abstract of the document here. The abstract is typically a short summary of the contents of
the document. Type the abstract of the document here. The abstract is typically a short summary of
the contents of the document.]

, Exam (elaborations)
APM2611 Assignment 4 (COMPLETE ANSWERS) 2024 -
DUE 25 September 2024
Course
 Differential Equations - APM2611 (APM2611)
 Institution
 University Of South Africa
 Book
 Differential Equations

APM2611 Assignment 4 (COMPLETE ANSWERS) 2024 - DUE 25 September
2024 ;100 % TRUSTED workings, explanations and solutions. ...........



Question 1 1. Find the radius and interval of convergence of the following
series: ���X n=1 (−1) n−1 x2n−1 (2n − 1)! 2. Rewrite the expression below
as a single power series: ∞X n=2 cn+1 x n−2 − ∞X n=1 4cn x n−1 . 3. Use the
power series method to solve the initialvalue problem (x + 1)y 00 − (2 − x)y 0
+ y = 0, y(0) = 2, y 0 (0) = −1; where c0 and c1 are given by the initial
conditions. 4. Use the power series method to solve the initialvalue problem.In
particular, find c 0 , c1 , c2 , c3 and c4 in the equation y(x) = P ∞ n=0 cn x n .
y 00− x 2 y = 0; y(0) = 3, y 0 (0) = 7.

Question 1

Find the radius and interval of convergence of the series:

∑n=1∞(−1)n−1x2n−1(2n−1)!\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{2n-1}}{(2n -
1)!}n=1∑∞(2n−1)!(−1)n−1x2n−1

Solution:

1. Consider the general term an=(−1)n−1x2n−1(2n−1)!a_n = \frac{(-1)^{n-1} x^{2n-1}}
{(2n-1)!}an=(2n−1)!(−1)n−1x2n−1.
2. Apply the ratio test: ∣an+1an∣=∣(−1)nx2(n+1)−1(2(n+1)−1)!⋅(2n−1)!
(−1)n−1x2n−1∣=∣x2n+1(2n+1)!⋅(2n−1)!x2n−1∣=∣x2(2n+1)(2n)∣\left| \frac{a_{n+1}}
{a_n} \right| = \left| \frac{(-1)^n x^{2(n+1)-1}}{(2(n+1)-1)!} \cdot \frac{(2n-1)!}{(-
1)^{n-1} x^{2n-1}} \right| = \left| \frac{x^{2n+1}}{(2n+1)!} \cdot \frac{(2n-1)!}
{x^{2n-1}} \right| = \left| \frac{x^2}{(2n+1)(2n)} \right|anan+1=(2(n+1)−1)!
(−1)nx2(n+1)−1⋅(−1)n−1x2n−1(2n−1)!=(2n+1)!x2n+1⋅x2n−1(2n−1)!=(2n+1)(2n)x2

Los beneficios de comprar resúmenes en Stuvia estan en línea:

Garantiza la calidad de los comentarios

Garantiza la calidad de los comentarios

Compradores de Stuvia evaluaron más de 700.000 resúmenes. Así estas seguro que compras los mejores documentos!

Compra fácil y rápido

Compra fácil y rápido

Puedes pagar rápidamente y en una vez con iDeal, tarjeta de crédito o con tu crédito de Stuvia. Sin tener que hacerte miembro.

Enfócate en lo más importante

Enfócate en lo más importante

Tus compañeros escriben los resúmenes. Por eso tienes la seguridad que tienes un resumen actual y confiable. Así llegas a la conclusión rapidamente!

Preguntas frecuentes

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

100% de satisfacción garantizada: ¿Cómo funciona?

Nuestra garantía de satisfacción le asegura que siempre encontrará un documento de estudio a tu medida. Tu rellenas un formulario y nuestro equipo de atención al cliente se encarga del resto.

Who am I buying this summary from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller ivymwendwa47820. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy this summary for 2,50 €. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

45,681 summaries were sold in the last 30 days

Founded in 2010, the go-to place to buy summaries for 14 years now

Empieza a vender

Vistos recientemente


2,50 €
  • (0)
  Añadir