100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada
logo-home
Ejercicios Algebra Lineal - Matrices 7,93 €
Añadir al carrito

Notas de lectura

Ejercicios Algebra Lineal - Matrices

 2 vistas  0 veces vendidas
  • Grado
  • Institución

Ejercicios de Matrices para el curso de algebra lineal o similar con su desarrollo paso a paso para mayor compresion

Vista previa 3 fuera de 27  páginas

  • 17 de julio de 2024
  • 27
  • 2021/2022
  • Notas de lectura
  • Marcela torrejon
  • Todas las clases
avatar-seller
UNIVERSIDAD CATÓLICA DE LA SANTÍSIMA CONCEPCIÓN
FACULTAD DE INGENIERÍA
DEPARTAMENTO DE MATEMÁTICA Y FÍSICA APLICADAS




Listado de Ejercicios RA3
Trabajo Autónomo, Ayudantı́a y Taller ALGEBRA LINEAL - IN1004C




: En Ayudantı́a y/o Taller

1 Con sus palabras escriba la respuesta a: ¿cuáles son gráficamente los únicos subespacios posibles en R2 ?

2 Con sus palabras escriba la respuesta a: ¿cuáles son gráficamente los únicos subespacios posibles en R3 ?

3 Determine justificando (gráficamente, con la definición de subespacio vectorial o con el Teorema de Caracterización,
según corresponda), si el conjunto S = { 3, 2, 0, 2, 3} es un subespacio de R con las operaciones usuales.

4 Determine justificando (gráficamente, con la definición de subespacio vectorial o con el Teorema de Caracterización,
según corresponda), si el conjunto S dado es un subespacio de R2 con las operaciones usuales.
⇢✓ ◆ ⇢✓ ◆
x x
a) S = 2 R2 : 2x 3y = 1 b) S = 2 R2 : 2x 3y = 0, x + y = 2 .
y y


&

5



Desafı́o Bibliográfico en Lay, D. (2012) Álgebra lineal y sus aplicaciones.
Ejercicios 4.1, item 3, en Pág. 196.


6 Determine justificando (gráficamente, con la definición de subespacio vectorial o con el Teorema de Caracterización,
según corresponda), si el conjunto S dado es un subespacio de R3 con las operaciones usuales.
80 1 9 80 1 9
< x = < x =
a) S = @ y A 2 R3 : x + 2y + 3z = 0 f ) S = @ y A 2 R3 : x + 2y z 10 = 0
: ; : ;
z z
80 1 9
< x = 80
< x
1 0
x
1 0
0
1 0 1
0
9
=
b) S = @ y A 2 R3 : x2 + y 2 + z 2  1 g) S =
:
@ y A 3
2R : @ y A = @ A @ A
3 +k 1 , k2R
;
: ; z z 3 1
z
80 1 9 80 1 9
< a = < x =
c) S = @ 0 A 2 R3 : a 2 R h) S = @ y A 2 R3 : x = 0, y + x = 0, 3z 2y = 0
: ; : ;
2a z
80 1 9 80 1 9
< x = < x =
y 3 2 3z
d ) S = @ y A 2 R3 : z 3y = 0 i) S = @ y A 2 R3 : x + 2 = =
: ; : 2 4 ;
z z
80 1 9
< a = 80 1 9
e) S = @ b A 2 R3 : a, b 2 R < 0 =
: ; j ) S = @ t A 2 R3 : t 2 R .
a+b+1 : ;
3t



1

, Taller 27/05




Teorema de Caracterización de Subespacios
subespacio vectorial Mí
>
S E IR es un de si

i) sto
ii) tuve 5 : utve S ( cerrado para la suma )
Hues Hae IR
multiplicac
'
Iii ) d. ne S ( cerrado la
,
:
para



Parini )
✗ 1-2 2-3 Z
¥
=
y a ✗ 1-2 =



4-


2×+4 -3 4×+8=2-37
y
=
a




Y = 2×+7 ^ 37=-4×-6
✗ c- IR
2-
¥ -2
-

=




✗ =3 , y
= 2.3+7=13
,
2- =


-4¥
-2 =
-6 { 4=0




Así
|?;) c- S y por tanto 5¥01

, Notemos que hip
+
b (2×-17) ( 2a 7)+ 2×+2 a + 14 2 (
y
+ = + = =




=
2 (


Luego el
conjunto S no es cerrado
para la suma .




Contraejemplo
F-
( ?;) (E) rf
'
es: a- es n+
y
v
v




2
3-12
=/




subespacio vectorial
Rpta : S no es un de


pues no cerrado la suma
=
es
para .




Ima : es
utilizar el
siguiente resultado
'
¢ subespaci
'

q S S no es un





¿ es
'
? =/

Los beneficios de comprar resúmenes en Stuvia estan en línea:

Garantiza la calidad de los comentarios

Garantiza la calidad de los comentarios

Compradores de Stuvia evaluaron más de 700.000 resúmenes. Así estas seguro que compras los mejores documentos!

Compra fácil y rápido

Compra fácil y rápido

Puedes pagar rápidamente y en una vez con iDeal, tarjeta de crédito o con tu crédito de Stuvia. Sin tener que hacerte miembro.

Enfócate en lo más importante

Enfócate en lo más importante

Tus compañeros escriben los resúmenes. Por eso tienes la seguridad que tienes un resumen actual y confiable. Así llegas a la conclusión rapidamente!

Preguntas frecuentes

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

100% de satisfacción garantizada: ¿Cómo funciona?

Nuestra garantía de satisfacción le asegura que siempre encontrará un documento de estudio a tu medida. Tu rellenas un formulario y nuestro equipo de atención al cliente se encarga del resto.

Who am I buying this summary from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller daniellamuoz. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy this summary for 7,93 €. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

45,681 summaries were sold in the last 30 days

Founded in 2010, the go-to place to buy summaries for 14 years now

Empieza a vender
7,93 €
  • (0)
Añadir al carrito
Añadido