Part IA — Vectors and Matrices
Based on lectures by N. Peake
These notes are not endorsed by the lecturers, and I have modified them (often
significantly) after lectures. They are nowhere near accurate representations of what
was actually lectured, and in particular, all errors are almost surely mine.
Complex numbers
Review of complex numbers, including complex conjugate, inverse, modulus, argument
and Argand diagram. Informal treatment of complex logarithm, n-th roots and complex
powers. de Moivre’s theorem. [2]
Vectors
Review of elementary algebra of vectors in R3 , including scalar product. Brief discussion
of vectors in Rn and Cn ; scalar product and the Cauchy-Schwarz inequality. Concepts
of linear span, linear independence, subspaces, basis and dimension.
Suffix notation: including summation convention, δij and εijk . Vector product and
triple product: definition and geometrical interpretation. Solution of linear vector
equations. Applications of vectors to geometry, including equations of lines, planes and
spheres. [5]
Matrices
Elementary algebra of 3 × 3 matrices, including determinants. Extension to n × n
complex matrices. Trace, determinant, non-singular matrices and inverses. Matrices as
linear transformations; examples of geometrical actions including rotations, reflections,
dilations, shears; kernel and image. [4]
Simultaneous linear equations: matrix formulation; existence and uniqueness of solu-
tions, geometric interpretation; Gaussian elimination. [3]
Symmetric, anti-symmetric, orthogonal, hermitian and unitary matrices. Decomposition
of a general matrix into isotropic, symmetric trace-free and antisymmetric parts. [1]
Eigenvalues and Eigenvectors
Eigenvalues and eigenvectors; geometric significance. [2]
Proof that eigenvalues of hermitian matrix are real, and that distinct eigenvalues give
an orthogonal basis of eigenvectors. The effect of a general change of basis (similarity
transformations). Diagonalization of general matrices: sufficient conditions; examples
of matrices that cannot be diagonalized. Canonical forms for 2 × 2 matrices. [5]
Discussion of quadratic forms, including change of basis. Classification of conics,
cartesian and polar forms. [1]
Rotation matrices and Lorentz transformations as transformation groups. [1]
0 Introduction
Vectors and matrices is the language in which a lot of mathematics is written
in. In physics, many variables such as position and momentum are expressed as
vectors. Heisenberg also formulated quantum mechanics in terms of vectors and
matrices. In statistics, one might pack all the results of all experiments into a
single vector, and work with a large vector instead of many small quantities. In
group theory, matrices are used to represent the symmetries of space (as well as
many other groups).
So what is a vector? Vectors are very general objects, and can in theory
represent very complex objects. However, in this course, our focus is on vectors
in Rn or Cn . We can think of each of these as an array of n real or complex
numbers. For example, (1, 6, 4) is a vector in R3 . These vectors are added in the
obvious way. For example, (1, 6, 4) + (3, 5, 2) = (4, 11, 6). We can also multiply
vectors by numbers, say 2(1, 6, 4) = (2, 12, 8). Often, these vectors represent
points in an n-dimensional space.
Matrices, on the other hand, represent functions between vectors, i.e. a
function that takes in a vector and outputs another vector. These, however, are
not arbitrary functions. Instead matrices represent linear functions. These are
functions that satisfy the equality f (λx + µy) = λf (x) + µf (y) for arbitrary
numbers λ, µ and vectors x, y. It is important to note that the function x 7→ x+c
for some constant vector c is not linear according to this definition, even though
it might look linear.
It turns out that for each linear function from Rn to Rm , we can represent
the function uniquely by an m × n array of numbers, which is what we call the
matrix. Expressing a linear function as a matrix allows us to conveniently study
many of its properties, which is why we usually talk about matrices instead of
the function itself.
4
Los beneficios de comprar resúmenes en Stuvia estan en línea:
Garantiza la calidad de los comentarios
Compradores de Stuvia evaluaron más de 700.000 resúmenes. Así estas seguro que compras los mejores documentos!
Compra fácil y rápido
Puedes pagar rápidamente y en una vez con iDeal, tarjeta de crédito o con tu crédito de Stuvia. Sin tener que hacerte miembro.
Enfócate en lo más importante
Tus compañeros escriben los resúmenes. Por eso tienes la seguridad que tienes un resumen actual y confiable.
Así llegas a la conclusión rapidamente!
Preguntas frecuentes
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
100% de satisfacción garantizada: ¿Cómo funciona?
Nuestra garantía de satisfacción le asegura que siempre encontrará un documento de estudio a tu medida. Tu rellenas un formulario y nuestro equipo de atención al cliente se encarga del resto.
Who am I buying this summary from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller harshwardhansandeeppawar. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy this summary for 4,40 €. You're not tied to anything after your purchase.