100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada
logo-home
MAT1503 Assignment 5 (COMPLETE ANSWERS) 2024 - DUE 10 September 2024 2,50 €   Añadir al carrito

Examen

MAT1503 Assignment 5 (COMPLETE ANSWERS) 2024 - DUE 10 September 2024

 135 vistas  1 veces vendidas
  • Grado
  • Institución
  • Book

MAT1503 Assignment 5 (COMPLETE ANSWERS) 2024 - DUE 10 September 2024

Vista previa 4 fuera de 42  páginas

  • 24 de agosto de 2024
  • 42
  • 2024/2025
  • Examen
  • Preguntas y respuestas
avatar-seller
,MAT1503 Assignment 5 (COMPLETE ANSWERS)
2024 - DUE 10 September 2024 ; 100% TRUSTED
Complete, trusted solutions and explanations.
Question 1: 12 Marks (1.1) Let U and V be the planes given by:
(2) U : λx + 5y − 2λz − 3 = 0, V : −λx + y + 2z + 1 = 0. Determine
for which value(s) of λ the planes U and V are: (a) orthogonal,
(2) (b) Parallel. (2) (1.2) Find an equation for the plane that
passes through the origin (0, 0, 0) and is parallel to the (3) plane
−x + 3y − 2z = 6. (1.3) Find the distance between the point
(−1,−2, 0) and the plane 3x − y + 4z = −2. (3)
Let's break down each part of the question step-by-step:
1.1 (a) Orthogonal Planes
To determine for which value(s) of λ\lambdaλ the planes UUU
and VVV are orthogonal, we need to check the dot product of
their normal vectors.
The planes are given by: U:λx+5y−2λz−3=0U: \lambda x + 5y - 2\
lambda z - 3 = 0U:λx+5y−2λz−3=0 V:−λx+y+2z+1=0V: -\lambda x
+ y + 2z + 1 = 0V:−λx+y+2z+1=0
The normal vector of plane UUU is nU=(λ,5,−2λ)\mathbf{n}_U =
(\lambda, 5, -2\lambda)nU=(λ,5,−2λ).
The normal vector of plane VVV is nV=(−λ,1,2)\mathbf{n}_V =
(-\lambda, 1, 2)nV=(−λ,1,2).
Two planes are orthogonal if their normal vectors are
orthogonal. This means their dot product should be zero:

,nU⋅nV=(λ,5,−2λ)⋅(−λ,1,2)\mathbf{n}_U \cdot \mathbf{n}_V = (\
lambda, 5, -2\lambda) \cdot (-\lambda, 1, 2)nU⋅nV
=(λ,5,−2λ)⋅(−λ,1,2)
Calculate the dot product:
nU⋅nV=λ(−λ)+5⋅1+(−2λ)⋅2\mathbf{n}_U \cdot \mathbf{n}_V = \
lambda(-\lambda) + 5 \cdot 1 + (-2\lambda) \cdot 2nU⋅nV
=λ(−λ)+5⋅1+(−2λ)⋅2 =−λ2+5−4λ= -\lambda^2 + 5 - 4\
lambda=−λ2+5−4λ
Set the dot product to zero:
−λ2+5−4λ=0-\lambda^2 + 5 - 4\lambda = 0−λ2+5−4λ=0
Rearrange into standard quadratic form:
λ2+4λ−5=0\lambda^2 + 4\lambda - 5 = 0λ2+4λ−5=0
Solve this quadratic equation using the quadratic formula
λ=−b±b2−4ac2a\lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}
{2a}λ=2a−b±b2−4ac:
λ=−4±16+202\lambda = \frac{-4 \pm \sqrt{16 + 20}}
{2}λ=2−4±16+20 λ=−4±362\lambda = \frac{-4 \pm \sqrt{36}}
{2}λ=2−4±36 λ=−4±62\lambda = \frac{-4 \pm 6}{2}λ=2−4±6
λ=1 or λ=−5\lambda = 1 \text{ or } \lambda = -5λ=1 or λ=−5
Thus, the planes UUU and VVV are orthogonal for λ=1\lambda =
1λ=1 and λ=−5\lambda = -5λ=−5.
1.1 (b) Parallel Planes

, Two planes are parallel if their normal vectors are parallel. This
means that one normal vector is a scalar multiple of the other.
For planes UUU and VVV:
nU=(λ,5,−2λ)\mathbf{n}_U = (\lambda, 5, -2\lambda)nU
=(λ,5,−2λ) nV=(−λ,1,2)\mathbf{n}_V = (-\lambda, 1, 2)nV
=(−λ,1,2)
We need to find λ\lambdaλ such that:
(λ,5,−2λ)=k(−λ,1,2)(\lambda, 5, -2\lambda) = k(-\lambda, 1, 2)
(λ,5,−2λ)=k(−λ,1,2)
Equate the components:
λ=−kλ\lambda = -k\lambdaλ=−kλ 5=k5 = k5=k −2λ=2k-2\lambda
= 2k−2λ=2k
From 5=k5 = k5=k, substitute kkk into the third equation:
−2λ=2×5-2\lambda = 2 \times 5−2λ=2×5 −2λ=10-2\lambda =
10−2λ=10 λ=−5\lambda = -5λ=−5
Substitute λ=−5\lambda = -5λ=−5 into λ=−kλ\lambda = -k\
lambdaλ=−kλ:
−5=−5k-5 = -5k−5=−5k k=1k = 1k=1
So, the planes UUU and VVV are parallel when λ=−5\lambda = -
5λ=−5.
1.2 Equation of a Plane Parallel to a Given Plane

Los beneficios de comprar resúmenes en Stuvia estan en línea:

Garantiza la calidad de los comentarios

Garantiza la calidad de los comentarios

Compradores de Stuvia evaluaron más de 700.000 resúmenes. Así estas seguro que compras los mejores documentos!

Compra fácil y rápido

Compra fácil y rápido

Puedes pagar rápidamente y en una vez con iDeal, tarjeta de crédito o con tu crédito de Stuvia. Sin tener que hacerte miembro.

Enfócate en lo más importante

Enfócate en lo más importante

Tus compañeros escriben los resúmenes. Por eso tienes la seguridad que tienes un resumen actual y confiable. Así llegas a la conclusión rapidamente!

Preguntas frecuentes

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

100% de satisfacción garantizada: ¿Cómo funciona?

Nuestra garantía de satisfacción le asegura que siempre encontrará un documento de estudio a tu medida. Tu rellenas un formulario y nuestro equipo de atención al cliente se encarga del resto.

Who am I buying this summary from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller Novaace1. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy this summary for 2,50 €. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

45,681 summaries were sold in the last 30 days

Founded in 2010, the go-to place to buy summaries for 14 years now

Empieza a vender
2,50 €  1x  vendido
  • (0)
  Añadir