100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada
logo-home
Solution Manual for Thomas' Calculus, SI Units, 15th edition Joel R. Hass Christopher E. Heil Maurice D. Weir 17,30 €   Añadir al carrito

Examen

Solution Manual for Thomas' Calculus, SI Units, 15th edition Joel R. Hass Christopher E. Heil Maurice D. Weir

1 revisar
 323 vistas  2 veces vendidas
  • Grado
  • Solution Manual
  • Institución
  • Solution Manual
  • Book

Solution Manual for Thomas' Calculus, SI Units, 15th edition Joel R. Hass Christopher E. Heil Maurice D. Weir

Vista previa 4 fuera de 1335  páginas

  • 15 de septiembre de 2024
  • 1335
  • 2024/2025
  • Examen
  • Preguntas y respuestas
  • Solution Manual
  • Solution Manual

1  revisar

review-writer-avatar

Por: hohengchiwisdom • 2 meses hace

It helps me to investigate in maths topic ! The book is too comprehensive

avatar-seller
SOLUTION MANUAL
THOMAS' CALCULUS, SI UNITS, 15TH EDITION JOEL R. HASS
CHRISTOPHER E. HEIL MAURICE D. WEIR
CHAPTER 1-19



CHAPTER 1 FUNCTIONS

1.1 FUNCTIONS AND THEIR GRAPHS

1. domain  (, ); range  [1, ) 2. domain  [0, ); range  (, 1]

3. domain  [2, ); y in range and y  5 x  10  0  y can be any positive real number  range  [0,  ).


4. domain  (, 0]  [3, ); y in range and y  x 2  3x  0  y can be any positive real number 
range  [0, ).

5. domain  (, 3)  (3, ); y in range and y  3 4 t , now if t  3  3  t  0  3 4 t  0, or if t  3 
3  t  0  3 4 t  0  y can be any nonzero real number  range  (, 0)  (0, ).


6. domain  (,  4)  ( 4, 4)  (4, ); y in range and y  2 , now if t  4  t 2  16  0  2  0, or if
t 2  16 t 2  16
4  t  4  16  t 2  16  0   16
2  2 , or if t  4  t  16  0 
2 2  0  y can be any nonzero
t 2  16 t 2  16
real number  range  (,  18 ]  (0, ).

7. (a) Not the graph of a function of x since it fails the vertical line test.
(b) Is the graph of a function of x since any vertical line intersects the graph at most once.

8. (a) Not the graph of a function of x since it fails the vertical line test.
(b) Not the graph of a function of x since it fails the vertical line test.



2
9. base  x; (height)2  2x  x 2  height  23 x; area is a( x)  12 (base)(height)  12 ( x) 23 x  43 x 2 ;  
perimeter is p( x)  x  x  x  3x.


10. s  side length  s 2  s 2  d 2  s  d ; and area is a  s 2  a  12 d 2 .
2


11. Let D  diagonal length of a face of the cube and  the length of an edge. Then 2  D2  d 2 and

 
2 2 3/2 3
D2  2 2  3 2  d 2   d . The surface area is 6 2
 6d3  2d 2 and the volume is 3
 d3  d .
3 3 3




© 2023 Pearson Education Ltd. All Rights Reserved.
1

,2 Chapter 1 Functions

 
12. The coordinates of P are x, x so the slope of the line joining P to the origin is m  x
x
 1 ( x  0).
x


Thus, x, x    1
m2
, 1
m .
13. 2 x  4 y  5  y   12 x  54 ; L  ( x  0)2  ( y  0)2  x 2  ( 12 x  54 )2  x 2  14 x 2  54 x  16
25

20 x 2  20 x  25 20 x 2  20 x  25
 54 x 2  54 x  16
25 
16
 4


14. y  x  3  y 2  3  x; L  ( x  4) 2  ( y  0) 2  ( y 2  3  4) 2  y 2  ( y 2  1) 2  y 2
 y4  2 y2  1  y2  y4  y2  1


15. The domain is ( ,  ). 16. The domain is ( ,  ).




17. The domain is ( ,  ). 18. The domain is ( , 0].




19. The domain is (, 0)  (0, ). 20. The domain is (, 0)  (0, ).




21. The domain is 22. The range is [5, ) .
(, 5)  (5, 3]  [3, 5)  (5, ).




© 2023 Pearson Education Ltd. All Rights Reserved.

, Section 1.1 Functions and Their Graphs 3


23. Neither graph passes the vertical line test.
(a) (b)




24. Neither graph passes the vertical line test.
(a) (b)




 x  y 1   y  1 x 
   
x y 1  or  or 
 x  y  1  y  1  x 
   

25. x 0 1 2 26. x 0 1 2
y 0 1 0 y 1 0 0




 4  x , x  1  , x  0
2 1
27. F ( x)   28. G ( x)   x
 x  2 x, x  1
2
 x, 0  x




29. (a) Line through (0, 0) and (1, 1): y  x; Line through (1, 1) and (2, 0): y   x  2
 x, 0  x  1
f ( x)  
 x  2, 1  x  2




© 2023 Pearson Education Ltd. All Rights Reserved.

, 4 Chapter 1 Functions

 2, 0  x 1
 0, 1 x  2

(b) f ( x)  
 2, 2 x3
 0, 3 x 4

30. (a) Line through (0, 2) and (2, 0): y   x  2
0 1
Line through (2, 1) and (5, 0): m  5  2  31   13 , so y   1 ( x  2)  1   1 x  5
3 3 3
  x  2, 0  x  2
f ( x)   1
 3 x  3 , 2  x  5
5


3  0
(b) Line through (1, 0) and (0, 3): m  0  (1)  3, so y  3x  3
1  3
Line through (0, 3) and (2, 1) : m  2  0  24  2, so y  2 x  3
3x  3,  1  x  0
f ( x)  
2 x  3, 0  x  2

31. (a) Line through (1, 1) and (0, 0): y   x
Line through (0, 1) and (1, 1): y  1
0 1
Line through (1, 1) and (3, 0): m  3  1  21   12 , so y   12 ( x  1)  1   12 x  23
 x 1  x  0

f ( x)   1 0  x 1
 1 1 x  3
 2 x  2
3  1x 2  x  0
 2
(b) Line through ( 2, 1) and (0, 0): y  12 x f ( x)  2 x  2 0  x  1
Line through (0, 2) and (1, 0): y  2 x  2  1 1 x  3
Line through (1, 1) and (3, 1): y  1 


  1 0
 
32. (a) Line through T2 , 0 and (T, 1): m  T  (T /2)  T2 , so y  T2 x  T2  0  T2 x  1
 0, 0  x  T2

f ( x)  
 T x  1, 2  x  T
2 T

 A, 0  x  T
 2
  A, T  x  T
 2
(b) f ( x)  
 A, T  x  32T

  A, 32T  x  2T

33. (a)  x   0 for x  [0, 1) (b)  x   0 for x  (1, 0]

34.  x    x  only when x is an integer.

35. For any real number x, n  x  n  1, where n is an integer. Now: n  x  n  1   (n  1)   x   n.
By definition:   x   n and  x   n    x   n. So   x     x  for all real x.




© 2023 Pearson Education Ltd. All Rights Reserved.

Los beneficios de comprar resúmenes en Stuvia estan en línea:

Garantiza la calidad de los comentarios

Garantiza la calidad de los comentarios

Compradores de Stuvia evaluaron más de 700.000 resúmenes. Así estas seguro que compras los mejores documentos!

Compra fácil y rápido

Compra fácil y rápido

Puedes pagar rápidamente y en una vez con iDeal, tarjeta de crédito o con tu crédito de Stuvia. Sin tener que hacerte miembro.

Enfócate en lo más importante

Enfócate en lo más importante

Tus compañeros escriben los resúmenes. Por eso tienes la seguridad que tienes un resumen actual y confiable. Así llegas a la conclusión rapidamente!

Preguntas frecuentes

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

100% de satisfacción garantizada: ¿Cómo funciona?

Nuestra garantía de satisfacción le asegura que siempre encontrará un documento de estudio a tu medida. Tu rellenas un formulario y nuestro equipo de atención al cliente se encarga del resto.

Who am I buying this summary from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller solutions. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy this summary for 17,30 €. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

45,681 summaries were sold in the last 30 days

Founded in 2010, the go-to place to buy summaries for 14 years now

Empieza a vender
17,30 €  2x  vendido
  • (1)
  Añadir