100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada
Buscado previamente por ti
Solutions Manual For Fundamentals of Heat and Mass Transfer 8th Edition By Bergman, Lavine, Incropera, DeWitt (All Chapters, 100% Original Verified, A+ Grade) 27,15 €
Añadir al carrito
Fundamentals Of Heat And Mass Transfer, 8e Bergman
Fundamentals of Heat and Mass Transfer, 8e Bergman
Examen
Solutions Manual For Fundamentals of Heat and Mass Transfer 8th Edition By Bergman, Lavine, Incropera, DeWitt (All Chapters, 100% Original Verified, A+ Grade)
79 vistas 2 veces vendidas
Grado
Fundamentals of Heat and Mass Transfer, 8e Bergman
Institución
Fundamentals Of Heat And Mass Transfer, 8e Bergman
This Is The Original 8th Edition Of The Solution Manual From The Original Author All Other Files In The Market Are Fake/Old Editions. Other Sellers Have Changed The Old Edition Number To The New But The Solution Manual Is An Old Edition.
Solutions Manual For Fundamentals of Heat and Mass Transf...
Fundamentals of Heat and Mass Transfer, 8e Bergman
Fundamentals of Heat and Mass Transfer, 8e Bergman
Vendedor
Seguir
tutorsection
Comentarios recibidos
Vista previa del contenido
Solu�ons Manual for
Fundamentals of Heat and
Mass Transfer 8th Edition By
Bergman, Lavine, Incropera,
DeWit
(All chapters 100% Original
Verified, A+ Grade)
All Chapters 14 to 1 with
Supplement files download link at the
end of this file.
, PROBLEM 14.1
KNOWN: Mixture of O 2 and N 2 with partial pressures in the ratio 0.21 to 0.79.
FIND: Mass fraction of each species in the mixture.
SCHEMATIC:
pO 2 0.21
=
p N2 0.79
MO = 32.00 kg / kmol
2
M N = 28.01 kg / kmol
2
ASSUMPTIONS: (1) Ideal gas behavior.
ANALYSIS: From the definition of the mass fraction,
ρi ρi
m=
i =
ρ Σρ i
Hence, with
pi pi Mi pi
ρi
= = = .
R iT ( ℜ / M i ) T ℜT
Hence
M i p i / ℜT
mi =
ΣM i p i / ℜT
or, canceling terms and dividing numerator and denominator by the total pressure p,
Mi x i
mi = .
ΣM i x i
With the mole fractions as
0.21
x O2 p=
= O2 / p = 0.21
0.21 + 0.79
x N 2 p=
= N 2 / p 0.79,
find the mass fractions as
32.00 × 0.21
=mO
2
= 0.233 <
32.00 × 0.21 + 28.01× 0.79
m N2 =
1 − mO2 =
0.767. <
, PROBLEM 14.2
KNOWN: Mole fraction (or mass fraction) and molecular weight of each species in a mixture of n
species. Equal mole fractions (or mass fractions) of O 2 , N 2 and CO 2 in a mixture.
FIND: (a) Equation for determining mass fraction of species i from knowledge of mole fraction and
molecular weight of each of n species. Equation for determining mole fraction of species i from
knowledge of mass fraction and molecular weight of each of n species. (b) For mixture containing
equal mole fractions of O 2 , N 2 , and CO 2 , find mass fraction of each species. For mixture containing
equal mass fractions of O 2 , N 2 , and CO 2 , find mole fraction of each species.
SCHEMATIC:
x=
O2 x=
N 2 x CO
= 1/ 3
2
or
m
= O2 m
= N 2 mCO
= 1/ 3
2
MCO = 44.01 kg/kmol
2
=MO 32.00
= kg/kmol, M N 28.01 kg/kmol
2 2
ASSUMPTIONS: (1) Ideal gas behavior.
ANALYSIS: (a) With
ρi ρi pi / R i T p i M i / ℜT
m=
i = = =
ρ ∑ ρi ∑ pi / R i T ∑ p i M i / ℜT
i i i
and dividing numerator and denominator by the total pressure p,
Mi x i
mi = . (1) <
∑ Mi x i
i
Similarly,
xi
= =
pi ρi R i T
=
( ρ i / M i ) ℜT
∑ pi ∑ ρi R i T ∑ ( ρi / M i ) ℜT
i i i
or, dividing numerator and denominator by the total density ρ
m i / Mi
xi = . (2) <
∑ m i / Mi
i
(b) With equal mole fractions of each species, x i = 1/3, using Eq. (1),
MO x O + M N x N + MCO x CO = (32.00 + 28.01 + 44.01) / 3 = 34.7 kg/kmol
2 2 2 2 2 2
=mO2 0.31,
= m N 2 0.27,
= mCO2 0.42. <
With equal mass fractions of each species, m i = 1/3, using Eq. (2),
mO / MO + m N / M N + mCO / M 2.99 ×10−2 kmol/kg
(1/ 32.00 + 1/ 28.01 + 1/ 44.01) / 3 =
=
2 2 2 2 2 CO2
find
=x O2 0.35,
= x N 2 0.40,
= x CO2 0.25. <
, PROBLEM 14.3
KNOWN: Partial pressures and temperature for a mixture of CO 2 and N 2 .
FIND: Molar concentration, mass density, mole fraction and mass fraction of each species.
SCHEMATIC:
A → CO 2 , M A = 44.01 kg / kmol
pA = pB = 0.75 bar B → N2 , MB = 28.01 kg / kmol
T = 318K
ASSUMPTIONS: (1) Ideal gas behavior.
ANALYSIS: From the equation of state for an ideal gas,
pi
Ci = .
ℜT
Hence, with p A = p B ,
0.75 bar
C=
A C=
B
8.314 × 10−2 m3 ⋅ bar / kmol ⋅ K × 318 K
C=
A C=
3
B 0.0284 kmol / m . <
With ρi = Mi Ci , it follows that
ρA =44.01 kg / kmol × 0.0284 kmol / m3 =
1.25 kg / m3 <
ρB =28.01 kg / kmol × 0.0284 kmol / m3 =0.795 kg / m3. <
Also, with
x i Ci / Σi Ci
=
find
x=
A x=
B 0..0568
= 0.5 <
and with
m
= i ρ i / Σρ i
find
A 1.25 / (1.25 + 0.795
m= = ) 0.611 <
m
= B 0.795 / (1.25 + 0.795
= ) 0.389. <
Los beneficios de comprar resúmenes en Stuvia estan en línea:
Garantiza la calidad de los comentarios
Compradores de Stuvia evaluaron más de 700.000 resúmenes. Así estas seguro que compras los mejores documentos!
Compra fácil y rápido
Puedes pagar rápidamente y en una vez con iDeal, tarjeta de crédito o con tu crédito de Stuvia. Sin tener que hacerte miembro.
Enfócate en lo más importante
Tus compañeros escriben los resúmenes. Por eso tienes la seguridad que tienes un resumen actual y confiable.
Así llegas a la conclusión rapidamente!
Preguntas frecuentes
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
100% de satisfacción garantizada: ¿Cómo funciona?
Nuestra garantía de satisfacción le asegura que siempre encontrará un documento de estudio a tu medida. Tu rellenas un formulario y nuestro equipo de atención al cliente se encarga del resto.
Who am I buying this summary from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller tutorsection. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy this summary for 27,15 €. You're not tied to anything after your purchase.