100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Markov Decision Processes Verified Solutions

Puntuación
-
Vendido
-
Páginas
7
Grado
A+
Subido en
30-10-2024
Escrito en
2024/2025

Markov Decision Processes Verified Solutions Markov decision processes ️️MDP - formally describe an environment for reinforcement learning - environment is fully observable - current state completely characterizes the process - Almost all RL problems can be formalised as MDP - optimal control primarily deals with continuous MDPs - Partially observable problems can be converted into MDPs - Bandits are MDPs with one state Markov Property ️️- future is independent of the past given the present -the state captures all relevant information from the history - once the state is known the history can be thrown away - the state is a sufficient statistic of the future State transition Matrix ️️- markov state s and successor state s', the state transition probability - state transition matrix P defines transition probabilities from all states s to all successor states s' Markov Process ️️- markov process is a memoryless random process i.e, a sequence of random states S1, S2... with the markov property -Markov process (or Markov Chain) is a tuple <S,P> - S is a (finite) set of states - P is a state transition probability matrix Markov reward process ️️- A markov reward process is a Markov Chain with values - Markov reward process is a tuple <S,P,R,Y> - S is a finite set of a states - P is a state transition probability matrix - R is a reward function -Y is a discount factor Return ️️- Return Gt is the total discounted reward from time-step t - the discount Y is the present value of future rewards - value of receiving reward R after k+1 time-steps is Y^k R - values immediate reward above delayed reward - y lose to 0 leads to "myopic" evaluation - y close to 1 leads to "far sighted" evaluation Discount ️️- mathematically convenient to discount rewards - Avoids infinite returns in cyclic Markov Processes - Uncertainty about the future may not be fully represented - if reward is financial, immediate rewards may earn more interest than delayed rewards - animal/human behavior shows preference for immediate reward - sometimes possible to use undiscounted Markov reward processes if all sequences terminate Value Function ️️-Value function v(s) gives the long-term value of state s - state value function v(s) of an MRP is the expected return starting from state s Bellman Equation for MRPs ️️the value function can be decomposed into two parts: - immediate reward Rt+1 - discounted value of successor state Yv(St+1)

Mostrar más Leer menos
Institución
M-arko-v Decision Processes Verified Solution
Grado
M-arko-v Decision Processes Verified Solution









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
M-arko-v Decision Processes Verified Solution
Grado
M-arko-v Decision Processes Verified Solution

Información del documento

Subido en
30 de octubre de 2024
Número de páginas
7
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Markov Decision Processes Verified Solutions

Markov decision processes ✔️✔️MDP - formally describe an environment for reinforcement learning

- environment is fully observable

- current state completely characterizes the process

- Almost all RL problems can be formalised as MDP

- optimal control primarily deals with continuous MDPs

- Partially observable problems can be converted into MDPs

- Bandits are MDPs with one state



Markov Property ✔️✔️- future is independent of the past given the present

-the state captures all relevant information from the history

- once the state is known the history can be thrown away

- the state is a sufficient statistic of the future



State transition Matrix ✔️✔️- markov state s and successor state s', the state transition probability

- state transition matrix P defines transition probabilities from all states s to all successor states s'



Markov Process ✔️✔️- markov process is a memoryless random process i.e, a sequence of random
states S1, S2... with the markov property

-Markov process (or Markov Chain) is a tuple <S,P>

- S is a (finite) set of states

- P is a state transition probability matrix



Markov reward process ✔️✔️- A markov reward process is a Markov Chain with values

- Markov reward process is a tuple <S,P,R,Y>

- S is a finite set of a states

- P is a state transition probability matrix

, - R is a reward function

-Y is a discount factor



Return ✔️✔️- Return Gt is the total discounted reward from time-step t

- the discount Y is the present value of future rewards

- value of receiving reward R after k+1 time-steps is Y^k R

- values immediate reward above delayed reward

- y lose to 0 leads to "myopic" evaluation

- y close to 1 leads to "far sighted" evaluation



Discount ✔️✔️- mathematically convenient to discount rewards

- Avoids infinite returns in cyclic Markov Processes

- Uncertainty about the future may not be fully represented

- if reward is financial, immediate rewards may earn more interest than delayed rewards

- animal/human behavior shows preference for immediate reward

- sometimes possible to use undiscounted Markov reward processes if all sequences terminate



Value Function ✔️✔️-Value function v(s) gives the long-term value of state s

- state value function v(s) of an MRP is the expected return starting from state s



Bellman Equation for MRPs ✔️✔️the value function can be decomposed into two parts:

- immediate reward Rt+1

- discounted value of successor state Yv(St+1)



Bellman Equation in Matrix Form ✔️✔️- Bellman equation can be expressed concisely using matrices,

v=R+yPv

v is a column vector with on entry per state
8,30 €
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
CertifiedGrades Chamberlain College Of Nursing
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
141
Miembro desde
2 año
Número de seguidores
61
Documentos
8748
Última venta
1 mes hace
High Scores

Hi there! Welcome to my online tutoring store, your ultimate destination for A+ rated educational resources! My meticulously curated collection of documents is designed to support your learning journey. Each resource has been carefully revised and verified to ensure top-notch quality, empowering you to excel academically. Feel free to reach out to consult with me on any subject matter—I'm here to help you thrive!

3,9

38 reseñas

5
21
4
6
3
2
2
3
1
6

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes