100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada
logo-home
Math 218 - Matrices Quiz 1 Questions And Answers Latest Update 13,73 €   Añadir al carrito

Examen

Math 218 - Matrices Quiz 1 Questions And Answers Latest Update

 6 vistas  0 veces vendidas
  • Grado
  • Institución

Math 218 - Matrices Quiz 1 Questions And Answers Latest Update

Vista previa 2 fuera de 8  páginas

  • 1 de noviembre de 2024
  • 8
  • 2024/2025
  • Examen
  • Preguntas y respuestas
avatar-seller
Solution 2024/2025
Pepper

Math 218 - Matrices Quiz 1 Questions And
Answers Latest Update

A matrix is in the row echelon form if ANS✔✔ in any two consecutive rows,
the pivot in the row below is to the right of the pivot in the row above. and
any row of zeros is at the end of the matrix.



A matrix is in the reduced row echelon form if ANS✔✔ it is in r.e.f, the pivots
are 1, and the rest of the entries are 0



A linear system is inconsistent if it admits ANS✔✔ no solution



A linear system is consistent if it admits ANS✔✔ a unique solution or
infinitely many solutions



what are elementary row operations? ANS✔✔ 1. Swap two rows

2. Multiply each element in a row or column by a non-zero value.

3. Multiply a row by a nonzero numb and add result to another row.



How to get solution of system using augmented matrix ANS✔✔ perform row
operations to reach r.e.f and get equations. Or do r.r.e.f and get solution on
the right



A linear system whose equations are all homogeneous must be consistent
ANS✔✔ True

, Solution 2024/2025
Pepper
A single linear equation with two or more unknowns must have inf many
solutions. ANS✔✔ true



A system has 3 equations (3 pivots) and 4 variables, what are possible
solutions? ANS✔✔ infinitely many or no solution



if m >= n ANS✔✔ unique, infinitely many or no solution



if m<n ANS✔✔ infinitely many or no solution



when does system have a unique solution? ANS✔✔ pivot = num of variables



It is possible to get different r.e.f for the same matrix ANS✔✔ true, r.e.f is
not unique but r.r.e.f and solution is



What is a homogeneous system? ANS✔✔ all the constants are = 0



What is a property of homogeneous system? ANS✔✔ Always consistent
since the trivial solution is always a solution



if m<n and homogeneous then ANS✔✔ system has infinitely many solutions



row vector ANS✔✔ 1xn matrix



column vector ANS✔✔ a matrix with only one column (mx1)

Los beneficios de comprar resúmenes en Stuvia estan en línea:

Garantiza la calidad de los comentarios

Garantiza la calidad de los comentarios

Compradores de Stuvia evaluaron más de 700.000 resúmenes. Así estas seguro que compras los mejores documentos!

Compra fácil y rápido

Compra fácil y rápido

Puedes pagar rápidamente y en una vez con iDeal, tarjeta de crédito o con tu crédito de Stuvia. Sin tener que hacerte miembro.

Enfócate en lo más importante

Enfócate en lo más importante

Tus compañeros escriben los resúmenes. Por eso tienes la seguridad que tienes un resumen actual y confiable. Así llegas a la conclusión rapidamente!

Preguntas frecuentes

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

100% de satisfacción garantizada: ¿Cómo funciona?

Nuestra garantía de satisfacción le asegura que siempre encontrará un documento de estudio a tu medida. Tu rellenas un formulario y nuestro equipo de atención al cliente se encarga del resto.

Who am I buying this summary from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller Schoolflix. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy this summary for 13,73 €. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

45,681 summaries were sold in the last 30 days

Founded in 2010, the go-to place to buy summaries for 14 years now

Empieza a vender
13,73 €
  • (0)
  Añadir