100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada
logo-home
Summary AP Calculus AB/BC: Understanding the limit definition of the derivative. 9,17 €   Añadir al carrito

Resumen

Summary AP Calculus AB/BC: Understanding the limit definition of the derivative.

 8 vistas  0 veces vendidas
  • Grado
  • AP Calculus AB
  • Institución
  • Senior / 12th Grade

This is an in-depth comprehensive review of the definition of the derivative, the limit definition, how to go from a finding the rate of change over an interval to finding the rate of change of a function at an instant, and AP exam tips to help you get a 5/5 or perfect score!

Vista previa 2 fuera de 9  páginas

  • 6 de noviembre de 2024
  • 9
  • 2024/2025
  • Resumen
  • Senior / 12th grade
  • AP Calculus AB
  • 4
avatar-seller
Limit Definition Of Derivative
(studying tips for the AP exam are at the bottom)
Suppose we have a straight line given by the equation f(x)=2x as shown in the graph below




We know we can find the rate of change or “slope” of the line at any point by using the rise/run
formula which is

∆𝑦 𝑦2−𝑦1
∆𝑥
= 𝑥2−𝑥1
∆𝑦 represents the change in the y-value AKA “rise” or how much the graph goes up on the
interval, and ∆𝑥 represents the change in the x-value AKA “run” or how much the graph moves
horizontally on the interval. The most important par tof this is that for a straight line, this rise
over run, or slope, is the same for every x-value.

2
But what about a curvy function like 𝑓(𝑥) = 𝑥 as shown in the graph below?

, You can try to figure out the average rate of change on any interval, but since the average rate of
change on any interval is different because the function gets steeper as you move to higher/lower
x-values, you could never get the “slope” of the function for every x-value with this method.

Well, as we know the average rate of change of a function is given by

∆𝑦 𝑦2−𝑦1
∆𝑥
= 𝑥2−𝑥1
Let’s replace the “y” with f(x) to better show function notation

∆𝑓(𝑥) 𝑓(𝑥2)−𝑓(𝑥1)
∆𝑥
= 𝑥2−𝑥1
Instead of representing the two points using 𝑥1 and 𝑥2, let’s represent them differently.
Let 𝑥1 stay as only “x” and let 𝑥2 be a small distance distance “h” away from 𝑥1, meaning we can
represent it as just “x+h” as shown in the graph below.

Los beneficios de comprar resúmenes en Stuvia estan en línea:

Garantiza la calidad de los comentarios

Garantiza la calidad de los comentarios

Compradores de Stuvia evaluaron más de 700.000 resúmenes. Así estas seguro que compras los mejores documentos!

Compra fácil y rápido

Compra fácil y rápido

Puedes pagar rápidamente y en una vez con iDeal, tarjeta de crédito o con tu crédito de Stuvia. Sin tener que hacerte miembro.

Enfócate en lo más importante

Enfócate en lo más importante

Tus compañeros escriben los resúmenes. Por eso tienes la seguridad que tienes un resumen actual y confiable. Así llegas a la conclusión rapidamente!

Preguntas frecuentes

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

100% de satisfacción garantizada: ¿Cómo funciona?

Nuestra garantía de satisfacción le asegura que siempre encontrará un documento de estudio a tu medida. Tu rellenas un formulario y nuestro equipo de atención al cliente se encarga del resto.

Who am I buying this summary from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller gavinrice. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy this summary for 9,17 €. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

45,681 summaries were sold in the last 30 days

Founded in 2010, the go-to place to buy summaries for 14 years now

Empieza a vender
9,17 €
  • (0)
  Añadir