100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada
logo-home
Questions ( circle) 7,92 €
Añadir al carrito

Examen

Questions ( circle)

 9 vistas  0 veces vendidas
  • Grado
  • Institución

Purpose: 1. _Assessment_: To assess the mathematical knowledge and skills of students 2. _Practice_: To provide students with practice questions for improving their mathematical skills 3. _Education_: To educate students on various mathematical concepts and principles

Vista previa 2 fuera de 11  páginas

  • 6 de diciembre de 2024
  • 11
  • 2024/2025
  • Examen
  • Solo preguntas
  • Escuela secundaria
  • 2
avatar-seller
..
**



CIRCLE 1 PDF(S)
JEE main - Mathematics


Section A
1. The equation of the circle having centre (1, -2) and passing through the point of intersection of lines 3x + y = 14, 2x + 5y
= 18 is

a) x2 + y2 - 2x + 4y - 20 = 0 b) x2 + y2 + 2x + 4y - 20 = 0

c) x2 + y2 + 2x - 4y - 20 = 0 d) x2 + y2 - 2x - 4y - 20 = 0

2. The area of triangle formed by the tangent, normal drawn at (1, √3) to the circle x2 + y2 = 4 and the positive x-axis, is




– –
a) 5√3 b) 4√3

– –
c) 2√3 d) √3


3. The equation of the circle of radius 5 and touching the coordinate axes in third quadrant, is
j
a) (x + 4)2 + (y + 4)2 = 25 b) (x + 6)2 + (y + 6)2 = 25
AK

c) (x + 5)2 + (y + 5)2 = 25 d) (x - 5)2 + (y + 5)2 = 25

4. Let C be the circle with centre (0, 0) and radius 3 units. The equation of the locus of the mid-point of the chords of the
circle C that subtend an angle of 2π

3
at its centre is

a) x2 + y2 = 9
b) x2 + y2 = 27

4 4



c) x2 + y2 = 1 d) x2 + y2 = 3

2



5. ax2 + 2y2 + 2bxy + 2x - y + c = 0 represents a circle through the origin, if

a) a = 1, b = 2, c = 0 b) a = 0, b = 0, c = 2

c) a = 2, b = 2, c = 0 d) a = 2, b = 0, c = 0
6. If a circle passes through the point (0, 0), (a, 0), (0, b), then its centre is

a) (a, b) b) (
b
,−
a
)
2 2




c) (b, a) d) (
a
,
b
)
2 2



7. The equation of a circle whose diameter is the line joining the points (-4, 3) and (12, -1) is

a) x2 + y2 - 8x - 2y - 51 = 0 b) x2 + y2 + 8x - 2y - 51 = 0

c) x2 + y2 + 8x + 2y - 51 = 0 d) x2 + y2 + 8x + 2y + 51 = 0

8. A circle touching the X-axis at (3, 0) and making an intercept of length 8 on the Y-axis passes through the point

a) (2, 3) b) (3, 10)



1/3
***

, c) (1, 5) d) (3, 5)

9. The locus of the centres of the circles, which touch the circle, x2 + y2 = 1 externally, also touch the Y-axis and lie in the
first quadrant, is
−−−− − −−−− −
a) x = √1 + 4y , y ≥ 0 b) x = √1 + 2y , y ≥ 0

−−−− − −−−− −
c) y = √1 + 2x , x ≥ 0 d) y = √1 + 4x , x ≥ 0



10. A variable tangent to the circle x2 + y2 = r2 at P cuts the coordinate axes at A and B. The path of midpoint M of AB is
given by

a) 1

x
2
+
1

y
2
= 4r
2
b) r
2
(
1
2
+
1
2
) = 2
x y


2

c) r 2
(
1
+
1
) = 4 d) 1

2
+
1

2
=
r

2
x y
2
x y 4




11. Area of the equilateral triangle inscribed in the circle x2 + y2 - 7x + 9y + 5 = 0 is
– –
a) 175

8
√3 square units b) 185

8
√3 square units
– –
c) square units d) square units
165 155
√3 √3
8 8



12. If the line 2x + 3y = 3 intersects the circle x2 + y2 - 4 = 0 at A and B and M(α, β ) is point of intersection of the tangents
at A and B, then α

β
is equal to:

a) 3

2
b) 2

3



c) 4
d) 3

3 4
j
13. Let L1 be a straight line passing through the origin and L2 be the straight line x + y = 1. If the intercepts made by the
AK

circle x2 + y2 - x + 3y = 0 on L1 and L2 are equal, then which of the following equations can represent L1?

a) x - 7y = 0 b) x - y = 0, x + 7y = 0

c) 7x + y = 0 d) x + y = 0, x - 7y = 0
14. The equation of the circle whose centre is (3, -1) and which cuts off a chord of length 6 on the line 2x - 5y + 18 = 0 is

a) (x + 3)2 + (y + 1)2 = √−−
38
b) (x - 3)2 + (y + 1)2 = √−−
38



c) (x + 3)2 +(y + 1)2 = 38 d) (x - 3)2 +(y + 1)2 = 38

15. If the coordinates of one end of the diameter of the circle x2 + y2 - 8x - 4y + c = 0 are (-3, 2), then the coordinates of
other end are

a) (6, 2) b) (5, 3)

c) (1, -8) d) (11, 2)
16. The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is
of length 3a is

a) x2 + y2 = a2 b) x2 + y2 = 9a2

c) x2 + y2 = 4a2 d) x2 + y2 = 16a2

17. The line lx + my + n = 0 will be a tangent to the circle x2 + y2 = a2 if

a) a2(I2 + m2) = n2 b) n2(l2 + m2) = a2




2/3
***

Los beneficios de comprar resúmenes en Stuvia estan en línea:

Garantiza la calidad de los comentarios

Garantiza la calidad de los comentarios

Compradores de Stuvia evaluaron más de 700.000 resúmenes. Así estas seguro que compras los mejores documentos!

Compra fácil y rápido

Compra fácil y rápido

Puedes pagar rápidamente y en una vez con iDeal, tarjeta de crédito o con tu crédito de Stuvia. Sin tener que hacerte miembro.

Enfócate en lo más importante

Enfócate en lo más importante

Tus compañeros escriben los resúmenes. Por eso tienes la seguridad que tienes un resumen actual y confiable. Así llegas a la conclusión rapidamente!

Preguntas frecuentes

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

100% de satisfacción garantizada: ¿Cómo funciona?

Nuestra garantía de satisfacción le asegura que siempre encontrará un documento de estudio a tu medida. Tu rellenas un formulario y nuestro equipo de atención al cliente se encarga del resto.

Who am I buying this summary from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller karishma27704. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy this summary for 7,92 €. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

45,681 summaries were sold in the last 30 days

Founded in 2010, the go-to place to buy summaries for 15 years now

Empieza a vender
7,92 €
  • (0)
Añadir al carrito
Añadido