100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada
logo-home
Microeconomics - Mathematics 8,04 €
Añadir al carrito

Notas de lectura

Microeconomics - Mathematics

 39 vistas  1 veces vendidas
  • Grado
  • Institución
  • Book

Brief summary of key formulae and mathematical methods involved in the intermediate microeconomics course at the University of Oxford.

Vista previa 2 fuera de 5  páginas

  • 4 de febrero de 2021
  • 5
  • 2018/2019
  • Notas de lectura
  • Alex teytelboym
  • Microeconomics - mathematics
avatar-seller
1 Mathematics

1.1 Sets and Functions

Definition 1. A consumption set, X, is said to be convex if and only if for every x, y, z 2 X,
where y ⌫ x and z ⌫ x we have for every q 2 [0, 1]

qy + (1 q )z ⌫ x. (1)

The term ‘convex preferences’ refers to the convexity of consumers’ consumption sets.
Convex preferences imply:
1. =) concave utility functions.
2. =) convex indifference curves.
Convex preferences are a fundamental assumption of many economic models.


1.2 Calculus

1.2.1 Di↵erentiation

Definition 2. Implicit differentiation provides a way to differentiate when two variables x
and y are implicitly related through z( x, y) = c.
In the case where z( x, y) = 0, we have:

∂z ∂z
dz = dx + dy = 0. (2)
∂x ∂y

which through rearranging will give us the derivative of y with respect to x:
∂z
dy
= ∂x
. (3)
dx ∂z
∂y



1.2.2 Integration

Definition 3. Integration by parts has the formula
Z Z
f 0 ( x ) g( x )dx = f ( x ) g( x ) f ( x ) g0 ( x )dx. (4)

Definition 4. Integration by substitution has the formula
Z
f 0 ( g( x )) g0 ( x )dx = f ( g( x )) + c. (5)



7

, 1.3 Optimisation

1.3.1 Quasi-concavity

Definition 5. A function f is said to be quasi-concave if for any ( x, x 0 ) where x 6= x 0 and
f ( x ) = f ( x 0 ) we have

f (tx + (1 t) x0 ) > f ( x ) = f ( x0 ) , t 2 (0, 1). (6)

• Critical points on a quasi-concave function are global maxima.


1.3.2 Transformation

Minimisation problems can be converted into maximisation problems by using the fact
that

min f ( x, y) , max f ( x, y). (7)


1.3.3 Multi-variate Optimisation

In order for a critical point ( x0 , y0 ) on f ( x, y) to be a global maximum we need the
first-order conditions to hold:
∂f
1. ∂x ( x0 , y0 ) = 0.
∂f
2. ∂y ( x0 , y0 ) = 0.
However, these conditions are insufficient for maximisation. Further, we need the sec-
ond partial derivatives to be negative for concavity:
∂2 f
1. ∂x2
( x0 , y0 ) < 0.
∂2 f
2. ∂y2
( x0 , y0 ) < 0.
But we need one further condition. Even if these four conditions hold, we might still
find a saddle point rather than a global optimum.




8

Los beneficios de comprar resúmenes en Stuvia estan en línea:

Garantiza la calidad de los comentarios

Garantiza la calidad de los comentarios

Compradores de Stuvia evaluaron más de 700.000 resúmenes. Así estas seguro que compras los mejores documentos!

Compra fácil y rápido

Compra fácil y rápido

Puedes pagar rápidamente y en una vez con iDeal, tarjeta de crédito o con tu crédito de Stuvia. Sin tener que hacerte miembro.

Enfócate en lo más importante

Enfócate en lo más importante

Tus compañeros escriben los resúmenes. Por eso tienes la seguridad que tienes un resumen actual y confiable. Así llegas a la conclusión rapidamente!

Preguntas frecuentes

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

100% de satisfacción garantizada: ¿Cómo funciona?

Nuestra garantía de satisfacción le asegura que siempre encontrará un documento de estudio a tu medida. Tu rellenas un formulario y nuestro equipo de atención al cliente se encarga del resto.

Who am I buying this summary from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller marcuseashby. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy this summary for 8,04 €. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

45,681 summaries were sold in the last 30 days

Founded in 2010, the go-to place to buy summaries for 14 years now

Empieza a vender
8,04 €  1x  vendido
  • (0)
Añadir al carrito
Añadido