100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Sumario Transformada de Laplace

Puntuación
-
Vendido
-
Páginas
5
Subido en
13-09-2021
Escrito en
2021/2022

- Primitiva de la función exponencial. - Función Gamma. - Funciones hiperbólicas. - Algunas fórmulas e identidades trigonométricas. - Método de integración por partes. - Un par de primitivas elementales. - Algunas ideas sobre la función arcotangente. - Regla de L’Hôpital. - Descomposición en fracciones simples. - Transformada de Laplace. - Propiedades de la transformada de Laplace. - Cálculo de integrales impropias. - Teoremas sobre transformadas de Laplace. - Transformada inversa de Laplace. - Transformadas inversas de Laplace de las funciones elementales. - Propiedades de la transformada inversa de Laplace. - Cálculo de la transformada inversa de Laplace de funciones racionales

Mostrar más Leer menos
Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
13 de septiembre de 2021
Número de páginas
5
Escrito en
2021/2022
Tipo
Resumen

Temas

Vista previa del contenido

Preliminares Tema 1.
P1. Primitiva de la función exponencial.
𝑓(𝑥) 𝑓(𝑥)
Fórmula ∫𝑒 𝑓'(𝑥)𝑑𝑥 = 𝑒 +𝐶

P2. Función Gamma.
Definición.
Definimos la función gamma, Γ(𝑝), como
+ +
Γ: 𝑅 → 𝑅

𝑝−1 −𝑡
𝑝 → Γ(𝑝) = ∫ 𝑡 𝑒 𝑑𝑡
0

𝑝−1 −𝑡
es decir, Γ(𝑝) = ∫ 𝑡 𝑒 𝑑𝑡 para 𝑝 > 0
0
Propiedades:
- Γ(1) = 1
- Γ(𝑝) = (𝑝 − 1)Γ(𝑝 − 1) 𝑝>1
- Γ(𝑛) = (𝑛 − 1)! ∀𝑛 ∈ 𝑁
- Γ ( )=
1
2
π


P3. Funciones hiperbólicas.
Fórmulas
𝑠 −𝑥 𝑥 −𝑥
𝑒 −𝑒 𝑒 +𝑒
𝑠𝑒𝑛ℎ𝑥 = 2
; 𝑐𝑜𝑠ℎ𝑥 = 2


P4. Algunas fórmulas e identidades trigonométricas.
Fórmulas.
2 2
𝑠𝑒𝑛 𝑥 + 𝑐𝑜𝑠 𝑥 = 1
2 1−𝑐𝑜𝑠(2θ) 2 1+𝑐𝑜𝑠(2θ)
𝑠𝑒𝑛 θ = 2
; 𝑐𝑜𝑠 θ = 2
2 2
𝑠𝑒𝑛(2𝑥) = 2𝑠𝑒𝑛𝑥𝑐𝑜𝑠𝑥; 𝑐𝑜𝑠(2𝑥) = 𝑐𝑜𝑠 𝑥 − 𝑠𝑒𝑛 𝑥

P5. Método de integración por partes.
Fórmula.
∫𝑢𝑑𝑣 = 𝑢𝑣 − ∫𝑢𝑑𝑣
Esta fórmula la podemos aplicar cuando queramos integrar el producto de una función por
la derivada de otra. Será útil cuando ∫𝑣𝑑𝑢 sea más sencilla de calcular que ∫𝑢𝑑𝑣. A veces
habrá que aplicar más de una vez el método para calcular la integral.

P6. Un par de primitivas elementales.
Fórmulas.
𝑓'(𝑥)
∫ 𝑓(𝑥)
𝑑𝑥 = 𝑙𝑛|𝑓(𝑥)| + 𝐶
𝑓'(𝑥)
∫ 2 𝑑𝑥 = 𝑎𝑟𝑐𝑡𝑔[𝑓(𝑥)] + 𝐶
1+[𝑓(𝑥)]

, P7. Algunas ideas sobre la función arcotangente.
Ideas.
Se define la función 𝑎𝑟𝑐𝑡𝑔𝑥 como la inversa de la función 𝑡𝑔𝑥. Así, para calcular el valor de
𝑎𝑟𝑐𝑡𝑔𝑎 sólo hay que pensar en el valor de 𝑏 que cumpla que 𝑡𝑔𝑏 = 𝑎. Por ejemplo, tenemos
π π
que: 𝑎𝑟𝑐𝑡𝑔1 = 4
; 𝑎𝑟𝑐𝑡𝑔0 = 0; 𝑎𝑟𝑐𝑡𝑔∞ = 2
P8. Infinitésimos equivalentes.
Fórmulas.
Las siguientes funciones son infinitésimos equivalentes cuando 𝑥 → 0:
2
𝑥
𝑠𝑒𝑛𝑥 ∼ 𝑥; 𝑡𝑔𝑥 ∼ 𝑥; 1 − 𝑐𝑜𝑠𝑥 ∼ 2
; 𝑙𝑛(1 + 𝑥) ∼ 𝑥


P9. Regla de L’Hôpital.
Enunciado.
Sean 𝑓(𝑥) y 𝑔(𝑥) dos funciones derivables en un entorno de un punto 𝑎. Si se tiene que
𝑓'(𝑥) 𝑓(𝑥)
lim 𝑓(𝑥) = lim 𝑔(𝑥) = 0 y además existe lim 𝑔'(𝑥)
, entonces también existe lim 𝑔(𝑥)
,
𝑥→𝑎 𝑥→𝑎 𝑥→𝑎 𝑥→𝑎
𝑓(𝑥) 𝑓'(𝑥)
verificándose: lim 𝑔(𝑥)
= lim 𝑔'(𝑥)
𝑥→𝑎 𝑥→𝑎


Notas:

- El enunciado de este teorema también es válido para la indeterminación ∞
.
- Asimismo, se puede enunciar de forma análoga si 𝑎 es ∞ ó − ∞.
𝑓'(𝑥) 0
- Si en la expresión lim 𝑔'(𝑥)
se vuelve a presentar una indeterminación del tipo 0
ó
𝑥→𝑎


se puede volver a aplicar la regla de L’Hôpital (siempre y cuando se cumplan las
hipótesis de aplicabilidad).

P10. Propiedades de los logaritmos.
Fórmulas.
𝑙𝑛𝑎 + 𝑙𝑛𝑏 = 𝑙𝑛(𝑎𝑏)
𝑙𝑛𝑎 − 𝑙𝑛𝑏 = 𝑙𝑛 ( ) 𝑎
𝑏
𝑟
𝑟𝑙𝑛𝑎 = 𝑙𝑛𝑎

P11. Descomposición en fracciones simples.
Procedimiento.
𝑃(𝑥)
Sea 𝑄(𝑥)
una función racional (cociente de polinomios) tal que el grado del denominador es
mayor que el grado del numerador. Pretendemos descomponer este cociente en suma de
una serie de fracciones que tengan una expresión más “manejable”.
La clave del procedimiento va a estar en las raíces del polinomio 𝑄(𝑥) del denominador. Por
cada raíz del denominador se tiene una descomposición en fracciones, dependiendo del
orden de multiplicidad de la raíz. Analicemos esos casos:
𝐴1
- 𝑟 una raíz real simple. 𝑥−𝑟
con 𝐴1 nº real a determinar.
𝐴1 𝐴2
- 𝑟 una raíz real doble. 𝑥−𝑟
+ 2 con 𝐴1, 𝐴2 nº reales a determinar.
(𝑥−𝑟)
$4.82
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
merche2002

Documento también disponible en un lote

Conoce al vendedor

Seller avatar
merche2002 Universidad de Málaga
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
5 año
Número de seguidores
0
Documentos
32
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes