100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada
logo-home
Test Bank for Pilbeam’s Mechanical Ventilation, 6th Edition, J M Cairo.pdf $25.49   Añadir al carrito

Examen

Test Bank for Pilbeam’s Mechanical Ventilation, 6th Edition, J M Cairo.pdf

 4 vistas  0 veces vendidas
  • Grado
  • Registered Nurse Educator
  • Institución
  • Registered Nurse Educator
  • Book

Test Bank for Pilbeam’s Mechanical Ventilation, 6th Edition Elevate your understanding and expertise in respiratory care with the Test Bank for Pilbeam’s Mechanical Ventilation, 6th Edition. This essential resource is designed for nursing students, respiratory therapists, and healthcare profes...

[Mostrar más]

Vista previa 4 fuera de 307  páginas

  • 11 de mayo de 2023
  • 307
  • 2024/2025
  • Examen
  • Preguntas y respuestas
  • Registered Nurse Educator
  • Registered Nurse Educator
avatar-seller
https://www.stuvia.com/




Chapter 01: Basic Terms and Concepts of Mechanical Ventilation
Cairo: Pilbeam’s Mechanical Ventilation: Physiological and Clinical Applications, 6th
Edition


MULTIPLE CHOICE

1. The body’s mechanism for conducting air in and out of the lungs is known as which of the
following?
a. External respiration
b. Internal respiration
c. Spontaneous ventilation
d. Mechanical ventilation
ANS: C
The conduction of air in and out of the body is known as ventilation. Since the question asks
for the body’s mechanism, this would be spontaneous ventilation. External respiration
involves the exchange of oxygen (O2) and carbon dioxide (CO2) between the alveoli and the
pulmonary capillaries. Internal respiration occurs at the cellular level and involves movement
of oxygen from the systemic blood into the cells.

REF: pg. 2

2. Which of the following are involved in external respiration?
a. Red blood cells and body cells
b. Scalenes and trapezius muscles
c. Alveoli and pulmonary capillaries
d. External oblique and transverse abdominal muscles
ANS: C
External respiration involves the exchange of oxygen and carbon dioxide (CO2) between the
alveoli and the pulmonary capillaries. Internal respiration occurs at the cellular level and
involves movement of oxygen from the systemic blood into the cells. Scalene and trapezius
muscles are accessory muscles of inspiration. External oblique and transverse abdominal
muscles are accessory muscles of expiration.

REF: pg. 2

3. The graph that shows intrapleural pressure changes during normal spontaneous breathing is
depicted by which of the following?
a.

,https://www.stuvia.com/




b.




c.




d.




ANS: B
During spontaneous breathing, the intrapleural pressure drops from about 5 cm H2O at end-
expiration to about 10 cm H2O at end-inspiration. The graph depicted for answer B shows
that change from 5 cm H2O to 10 cm H2O.

REF: pg. 3

4. During spontaneous inspiration alveolar pressure (PA) is about: ________________.
a. 1 cm H2O
b. +1 cm H2O
c. 0 cm H2O
d. 5 cm H2O
ANS: A
1 cm H2O is the lowest alveolar pressure will become during normal spontaneous
ventilation. During the exhalation of a normal spontaneous breath the alveolar pressure will
become 1 cm H2O.

REF: pg. 4

5. The pressure required to maintain alveolar inflation is known as which of the following?
a. Transairway pressure (PTA)
b. Transthoracic pressure (PTT)
c. Transrespiratory pressure (PTR)
d. Transpulmonary pressure (PL)
ANS: D

,https://www.stuvia.com/




The definition of transpulmonary pressure (PL) is the pressure required to maintain alveolar
inflation. Transairway pressure (PTA) is the pressure gradient required to produce airflow in the
conducting tubes. Transrespiratory pressure (PTR) is the pressure to inflate the lungs and
airways during positive-pressure ventilation. Transthoracic pressure (PTT) represents the
pressure required to expand or contract the lungs and the chest wall at the same time.

REF: pg. 4

6. Calculate the pressure needed to overcome airway resistance during positive-pressure
ventilation when the proximal airway pressure (PAw) is 35 cm H2O and the alveolar pressure
(PA) is 5 cm H2O.
a. 7 cm H2O
b. 30 cm H2O
c. 40 cm H2O
d. 175 cm H2O
ANS: B
The transairway pressure (PTA) is used to calculate the pressure required to overcome airway
resistance during mechanical ventilation. This formula is PTA = Paw - PA.

REF: pg. 4

7. The term used to describe the tendency of a structure to return to its original form after being
stretched or acted on by an outside force is which of the following?
a. Elastance
b. Compliance
c. Viscous resistance
d. Distending pressure
ANS: A
The elastance of a structure is the tendency of that structure to return to its original shape after
being stretched. The more elastance a structure has, the more difficult it is to stretch. The
compliance of a structure is the ease with which the structure distends or stretches.
Compliance is the opposite of elastance. Viscous resistance is the opposition to movement
offered by adjacent structures such as the lungs and their adjacent organs. Distending pressure
is pressure required to maintain inflation, for example, alveolar distending pressure.

REF: pg. 5

8. Calculate the pressure required to achieve a tidal volume of 400 mL for an intubated patient
with a respiratory system compliance of 15 mL/cm H2O.
a. 6 cm H2O
b. 26.7 cm H2O
c. 37.5 cm H2O
d. 41.5 cm H2O
ANS: B
C = V/P then P = V/C

REF: pg. 5

,https://www.stuvia.com/




9. Which of the following conditions causes pulmonary compliance to increase?
a. Asthma
b. Kyphoscoliosis
c. Emphysema
d. Acute respiratory distress syndrome (ARDS)
ANS: C
Emphysema causes an increase in pulmonary compliance, whereas ARDS and kyphoscoliosis
cause decreases in pulmonary compliance. Asthma attacks cause increase in airway resistance.

REF: pg. 6 | pg. 7

10. Calculate the effective static compliance (Cs) given the following information about a patient
receiving mechanical ventilation: peak inspiratory pressure (PIP) is 56 cm H2O, plateau
pressure (Pplateau) is 40 cm H2O, exhaled tidal volume (VT) is 650 mL, and positive end
expiratory pressure (PEEP) is 10 cm H2O.
a. 14.1 mL/cm H2O
b. 16.3 mL/cm H2O
c. 21.7 mL/cm H2O
d. 40.6 mL/cm H2O
ANS: C
The formula for calculating effective static compliance is Cs = VT/(Pplateau  EEP).

REF: pg. 6 | pg. 7

11. Based upon the following patient information, calculate the patient’s static lung compliance:
exhaled tidal volume (VT) is 675 mL, peak inspiratory pressure (PIP) is 28 cm H2O, plateau
pressure (Pplateau) is 8 cm H2O, and PEEP is set at 5 cm H2O.
a. 0.02 L/cm H2O
b. 0.03 L/cm H2O
c. 0.22 L/cm H2O
d. 0.34 L/cm H2O
ANS: C
The formula for calculating effective static compliance is Cs = VT/(Pplateau  EEP).

REF: pg. 5 | pg. 6

12. A patient receiving mechanical ventilation has an exhaled tidal volume (VT) of 500 mL and a
positive end expiratory pressure setting (PEEP) of 5 cm H2O. Patient-ventilator system checks
reveal the following data:

Time PIP (cm H2O) Pplateau (cm H2O)
0600 27 15
0800 29 15
1000 36 13

The respiratory therapist should recommend which of the following for this patient?
1. Tracheobronchial suctioning
2. Increase in the set tidal volume

Los beneficios de comprar resúmenes en Stuvia estan en línea:

Garantiza la calidad de los comentarios

Garantiza la calidad de los comentarios

Compradores de Stuvia evaluaron más de 700.000 resúmenes. Así estas seguro que compras los mejores documentos!

Compra fácil y rápido

Compra fácil y rápido

Puedes pagar rápidamente y en una vez con iDeal, tarjeta de crédito o con tu crédito de Stuvia. Sin tener que hacerte miembro.

Enfócate en lo más importante

Enfócate en lo más importante

Tus compañeros escriben los resúmenes. Por eso tienes la seguridad que tienes un resumen actual y confiable. Así llegas a la conclusión rapidamente!

Preguntas frecuentes

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

100% de satisfacción garantizada: ¿Cómo funciona?

Nuestra garantía de satisfacción le asegura que siempre encontrará un documento de estudio a tu medida. Tu rellenas un formulario y nuestro equipo de atención al cliente se encarga del resto.

Who am I buying this summary from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller examsolutions3. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy this summary for $25.49. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

45,681 summaries were sold in the last 30 days

Founded in 2010, the go-to place to buy summaries for 14 years now

Empieza a vender

Vistos recientemente


$25.49
  • (0)
  Añadir