100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada
logo-home
[BSc TN] Summary Transport Phenomena - 2nd Midterm $4.01   Añadir al carrito

Resumen

[BSc TN] Summary Transport Phenomena - 2nd Midterm

 29 vistas  2 veces vendidas
  • Grado
  • Institución
  • Book

--- Satisfied? Please don't forget to leave a rating! --- This summary covers chapters 4 and 5 of "Transport Phenomena - The Art of Balancing" by H. v.d. Akker and R.F. Mudde (besides the less crucial §4.4 and §5.5) and the lectures given of the accompanying course "TN2786 - Fysische Transport...

[Mostrar más]

Vista previa 3 fuera de 18  páginas

  • Desconocido
  • 20 de mayo de 2023
  • 18
  • 2021/2022
  • Resumen
avatar-seller
4 Mass transport
4.1 Analogy between mass transport and heat transport
There exist analogies between mass and heat transport.
For the convective transport of both heat ϕq [J s−1 ] and mass ϕm [kg s−1 ]:
ϕq = ϕv · ρcp T, (4.1)
ϕm = ϕv · c. (4.2)
For the convective fluxes of both heat ϕ′′q [J m−2 s−1 ] and mass ϕ′′m [kg m−2 s−1 ]:
ϕ′′q = v · ρcp T, (L14)
ϕ′′m = v · c. (L14)
For the diffusion coefficients of both heat and mass: a [m2 s−1 ], D [m2 s−1 ].
For the diffusive fluxes of both heat ϕ′′q [J m−2 s−1 ] and mass ϕ′′m [kg m−2 s−1 ]:
dT d(ρcp T )
ϕ′′q = −λ = −a (Fourier’s law), (4.3)
dx dx
dc
ϕ′′m = −D (Fick’s law). (4.4)
dx
Fick’s law only applies to binary (so only two substances) systems, and gives a poor
description for polar molecules. The analogy with heat transport therefore does not
hold under every condition.

4.2 Mutual diffusion based on the analogy with heat trans-
port
Mass flow and a driving force can be linked similarly to Newton’s law of cooling.
For a substance A,
ϕm,A = kA∆cA , (4.30)
where k [m s−1 ] is the mass transfer coefficient.
This equation is entirely analogous with heat transport, where 1/k can now be
interpreted as the resistance to mass transport.
Between two flat plates a distance D apart:
D
k= ;
D
for annular space between two cylinders of radii D1 and D2 :
2D
k= ;
D2 ln(D2 /D1 )
and for a sphere in an infinite medium of radius D:
2D
k= .
D

23

,In non-dimensional form, the ratio of the convective mass transport and the diffusive
mass transport is known as the Sherwood number (Sh):

kD
Sh = , (4.31)
D

which is analogous to the Nusselt number (Nu).

Similarly for the Prandtl number (Pr), we have the analoglous Schmidt number (Sc):

ν
Sc = . (L14)
D


For mass, we can also analogously to heat work with penetration theory. The
penetration depth is now defined as

δ(t) = πDt, (L14)

which again is only valid for a layer/slab of thickness D if δ(t) < 0.6D. With help
of the Fourier number:

Dt
Fo = < 0.1. (4.35)
D2

And, for double-heated layers/slabs or cylindrical/spherical bodies:

Fo < 0.03.

It is then also clear that
r
D D D
ϕ′′m = k∆c = ∆c = √ ∆c = ∆c, (L14)
D πDt πt

which implies that k is dependent on time:
r
D
k(t) = . (4.36)
πt
With the penetration depth δ(t) only having a significantly changed concentration,
it follows that the overall concentration difference is independent on time:

∆c = c1 − c0 ̸= f (t).




24

, Similarly, we speak of long-term diffusion into a layer of a stagnant medium or a
solid material if: Fo > 0.1 for diffusion processes from/towards a single boundary
plane; and if Fo > 0.03 for diffusion processes concerning double-sided diffusion
from/towards a slab or a cylindrical/spherical body.

We again work with a mean concentration ⟨c⟩, which yields

D
ϕ′′m = k(c1 − ⟨c⟩) = Sh (c1 − ⟨c⟩),
D
where k is now independent on time and therefore is constant:

D
k = Sh ̸= f (t). (L14)
D

So for long periods of time, we again find

For a flat slab: Sh = 4.93;
For a long cylinder: Sh = 5.8;
For a sphere: Sh = 6.6.

The concentration difference after long times, so Fo > 0, 03, is then also dependent
on time:

∆c = T1 − ⟨T ⟩ = f (t).



Again, the driving force for diffusion can also be described by the concentration at
the centre of a body cc by

ϕ′′m = k(c1 − cc ).



The exact solutions for the total diffusion process for a number of finite-size objects
are shown in TPDC ”Fourier Instationary Heat and Mass Transfer” (p. 90-92) for
the ratios
c1 − cc c1 − ⟨c⟩
and .
c1 − c0 c1 − c0
Note that for smaller values of Fo (e.g. Fo < 0.03), these graphs lead to inaccurate
results and it is therefore better to use penetration theory.




25

Los beneficios de comprar resúmenes en Stuvia estan en línea:

Garantiza la calidad de los comentarios

Garantiza la calidad de los comentarios

Compradores de Stuvia evaluaron más de 700.000 resúmenes. Así estas seguro que compras los mejores documentos!

Compra fácil y rápido

Compra fácil y rápido

Puedes pagar rápidamente y en una vez con iDeal, tarjeta de crédito o con tu crédito de Stuvia. Sin tener que hacerte miembro.

Enfócate en lo más importante

Enfócate en lo más importante

Tus compañeros escriben los resúmenes. Por eso tienes la seguridad que tienes un resumen actual y confiable. Así llegas a la conclusión rapidamente!

Preguntas frecuentes

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

100% de satisfacción garantizada: ¿Cómo funciona?

Nuestra garantía de satisfacción le asegura que siempre encontrará un documento de estudio a tu medida. Tu rellenas un formulario y nuestro equipo de atención al cliente se encarga del resto.

Who am I buying this summary from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller rhjatol. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy this summary for $4.01. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

45,681 summaries were sold in the last 30 days

Founded in 2010, the go-to place to buy summaries for 14 years now

Empieza a vender
$4.01  2x  vendido
  • (0)
  Añadir