100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada
logo-home
Galois theory Exam Questions and Answers 100% Pass $12.49   Añadir al carrito

Examen

Galois theory Exam Questions and Answers 100% Pass

 5 vistas  0 veces vendidas
  • Grado
  • Galois theory
  • Institución
  • Galois Theory

Galois theory Exam Questions and Answers 100% Pass Group action -Answer-Let S be a set and let G be a group. Write Aut[Sets](S) for the group of bijective maps a : S → S (where the group law is given by the composition of maps). An action of G on S is a group homomorphism φ : G → Aut[Sets]...

[Mostrar más]

Vista previa 2 fuera de 14  páginas

  • 5 de mayo de 2024
  • 14
  • 2023/2024
  • Examen
  • Preguntas y respuestas
  • Galois theory
  • Galois theory
avatar-seller
Galois theory Exam Questions and Answers 100% Pass Group action -Answer -Let S be a set and let G be a group. Write Aut[Sets](S) for the group of bijective maps a : S → S (where the group law is given by the composition of maps). An action of G on S is a group homomorphism φ : G → Aut[Sets](S) S^G -Answer -S^G := {s ∈ S : γ(s) = s ∀γ ∈ G} (set of invariants of S under the action of G) Orbits of s under G -Answer -Orb(G, s) := {γ(s) : γ ∈ G} Stabiliser of s -Answer -Stab(G, s) := {γ ∈ G : γ(s) = s} Action compatible with ring structure -Answer -We shall say that the action of G on R is compatible with the ring structure of R, or that G acts on the ring R, if the image of φ lies in the subgroup Aut[Rings](R) ⊆ Aut[Sets](R) of Aut[Sets](R) Properties of the set of invariants for rings -Answer -Let G act on the ring R. (i) R^G is a subring of R. (ii) If R is a field, then R^G is a field. Symmetric polynomial -Answer -A symmetric polynomial with coefficients in R is an element of R[x1, . . . , xn]^Sn Elementary symmetric function -Answer -For any k ∈ {1, ..., n}, the polynomial k sk := Σ[i1<i2<···<ik]Π[j=1 to k]xij ∈ Z[x1,...,xn] is symmetric. It is called the k -th elementary symmetric function (in n variables) Fundamental theorem of the theory of symmetric functions -Answer -R[x1,...,xn]^Sn = R[s1,...,sn]. More precisely: Let φ : R[x1,...,xn] → R[x1,...,xn] be the map of rings, which sends xk to sk and which sends constant polynomials to themselves. Then (i) the ring R[x1,...,xn]^Sn is the image of φ; (ii) φ is injective. Some useful polynomials -Answer -(i) ∆(x1, ..., xn) := Π[i<j](xi −xj)^2 ∈ Z[x1,...,xn]^Sn; (ii) δ(x1, ..., xn) := Π[i<j](xi −xj) ∈ Z[x1, ..., xn]^An; (iii) If σ ∈ Sn, then δ(xσ(1), . . . , x σ(n)) = sign( σ)·δ(x1, ..., xn) Gauss's content function -Answer -For r∈Q s.t. |r| = p1^m1 . . . p1^mk , where m ∈ Z. We define ordp(r) := mi if p=pi and 0 otherwise. For f(x)= ∑cₙxⁿ, we define c(f)=Πp^min{ordp(ci)} i.e. product of p to their smallest power s.t. they feature in the prime factorisations of all the coefficients Field extension -Answer -Let K be a field. A field extension of K, or K -extension, is an injection K → M of fields. This injection endows M with the structure of a K -vector space. Alternate notation: M − K, M|K, M : K. We shall mostly use the notation M|K. Maps between extensions -Answer -A map from the K -extension M|K to the K -extension M′|K is a ring map M → M′ (which is necessarily injective), which is compatible with the injections K → M and K → M′. Automorphisms of extensions -Answer -If M|K is a field extension, we shall write AutK(M) for the group of bijective maps of K -extensions from M to M (where the group law is the composition of maps). In other words, the group AutK(M) is the subgroup of AutRi ngs(M), consisting of ring automorphisms, which are compatible with the K -
extension structure of M. Degree of the extension M|K -Answer -We shall write [M : K] for dimK(M)

Los beneficios de comprar resúmenes en Stuvia estan en línea:

Garantiza la calidad de los comentarios

Garantiza la calidad de los comentarios

Compradores de Stuvia evaluaron más de 700.000 resúmenes. Así estas seguro que compras los mejores documentos!

Compra fácil y rápido

Compra fácil y rápido

Puedes pagar rápidamente y en una vez con iDeal, tarjeta de crédito o con tu crédito de Stuvia. Sin tener que hacerte miembro.

Enfócate en lo más importante

Enfócate en lo más importante

Tus compañeros escriben los resúmenes. Por eso tienes la seguridad que tienes un resumen actual y confiable. Así llegas a la conclusión rapidamente!

Preguntas frecuentes

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

100% de satisfacción garantizada: ¿Cómo funciona?

Nuestra garantía de satisfacción le asegura que siempre encontrará un documento de estudio a tu medida. Tu rellenas un formulario y nuestro equipo de atención al cliente se encarga del resto.

Who am I buying this summary from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller GraceAmelia. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy this summary for $12.49. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

45,681 summaries were sold in the last 30 days

Founded in 2010, the go-to place to buy summaries for 14 years now

Empieza a vender
$12.49
  • (0)
  Añadir