100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada
logo-home
Test 3 Dual Enrollment Pre Cal Multiple Choice Questions and and answers. $7.99   Añadir al carrito

Examen

Test 3 Dual Enrollment Pre Cal Multiple Choice Questions and and answers.

 11 vistas  0 veces vendidas
  • Grado
  • Institución

Test 3 Dual Enrollment Pre Cal Multiple Choice Questions and and answers.

Vista previa 2 fuera de 5  páginas

  • 25 de junio de 2024
  • 5
  • 2023/2024
  • Examen
  • Preguntas y respuestas
avatar-seller
Test 3 Dual Enrollment Pre Cal Multiple
Choice

According to the video what is the reason we have been studying one-to-one
functions so far in this section?
A. Because every​one-to-one function has an inverse function.
B. Because every​one-to-one function is a​piece-wise defined function.

✅✅
C. Because every​one-to-one function has an infinite range.
D. Because every​one-to-one function has a finite domain. - -A. Because every
one-to-one function has an inverse function.

For a quadratic function f(x)=ax^2 + bx + c, what is not true about the​domain, the​
range, and the intercepts of the​function?
A. The​x-intercept(s) will be the real zeros of the function.
B. The domain will always be (-infinity, infinity).

✅✅
C. One endpoint of the range will always be the​h-coordinate of the vertex.
D. The range will never be (-infinity, infinity). - -C. One endpoint of the range
will always be the​h-coordinate of the vertex.

Given the graph of a quadratic function with the vertex and the​y-intercept clearly​
identified, which of the following statements is not ​true?
A. The value of c in f(x)=ax^2 + bx + c can easily be determined because it
represents the​y-intercept of the graph.
B. The value of b in f(x)=ax^2 + bx + c can easily be determined from the shape of
the graph.
C. The values of h and k in f(x)=a(x-h)^2+ k can easily be determined because these
values represent the x and y coordinates of the vertex respectively.
D. The sign of the value of a in f(x)=ax^2 + bx + c​,

✅✅
or equivalently f(x)=a(x-h)^2+ k​,
can easily be determined from the shape of the graph. - -B. The value of b in
f(x)=ax^2 + bx + c can easily be determined from the shape of the graph.

If f and g are inverse functions of one another, then which of the following is not
necessarily true?
A. (f of g)(x)=x
B. (g of f)(x)=x

✅✅
C. If f(-a)=b, then g(b)=-a.
D. If f(1)=-b, then g(b)=-1. - -D. If f(1)=-b, then g(b)=-1.

, The​right-hand behavior of the graph of a polynomial function of the form
f(x)=anx^n........+a0​can be determined by
A. the sign of the constant coefficient a0.
B. the degree n of the polynomial function.

✅✅
C. the sign of the leading coefficient an.
D. the number of terms in the polynomial function. - -C. the sign of the leading
coefficient an.

The shape of the graph of a polynomial function near the x​-intercepts can be
determined by
A. examining whether the​x-intercepts are even or odd.
B. examining the sign of the real zeros.

✅✅
C. examining whether the​x-intercepts are positive or negative.
D. examining the multiplicity of the real zeros. - -D. examining the multiplicity of
the real zeros.

Which of the following is not true about the shape of a power function of the form
f(x)=ax^n?
A. If a is positive and n is​odd, the graph approaches negative infinity on the left side
and positive infinity on the right side.
B. If a is positive and n is​even, the graph approaches positive infinity on the left side
and positive infinity on the right side.

✅✅
C. If n is​odd, the shape of the graph resembles a parabola.
D. If n=1, the graph is a straight line. - -C. If n is​odd, the shape of the graph
resembles a parabola.

Which of the following is not true?
A. It is possible for a piecewise defined function to have more than one y-intercept
depending on how the function is defined.
B. Given the graph of a piecewise-defined function, it is sometimes possible to find a
rule that describes the graph.

✅✅
C. The domain of a piecewise-defined function can be (-infinity, infinity)
D. The range of a piecewise-defined function can be (-infinity, infinity) - -A. It is
possible for a piecewise defined function to have more than one y-intercept
depending on how the function is defined.

Which of the following statements about projectile motion is not​true?
A. An object thrown or shot vertically into the air reaches a maximum height after t
seconds​(when time is measured in​seconds), where t is the​k-coordinate of the
vertex of the parabola.
B. The acceleration of gravity on earth is approximately 9.8 meters per second per
second.

Los beneficios de comprar resúmenes en Stuvia estan en línea:

Garantiza la calidad de los comentarios

Garantiza la calidad de los comentarios

Compradores de Stuvia evaluaron más de 700.000 resúmenes. Así estas seguro que compras los mejores documentos!

Compra fácil y rápido

Compra fácil y rápido

Puedes pagar rápidamente y en una vez con iDeal, tarjeta de crédito o con tu crédito de Stuvia. Sin tener que hacerte miembro.

Enfócate en lo más importante

Enfócate en lo más importante

Tus compañeros escriben los resúmenes. Por eso tienes la seguridad que tienes un resumen actual y confiable. Así llegas a la conclusión rapidamente!

Preguntas frecuentes

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

100% de satisfacción garantizada: ¿Cómo funciona?

Nuestra garantía de satisfacción le asegura que siempre encontrará un documento de estudio a tu medida. Tu rellenas un formulario y nuestro equipo de atención al cliente se encarga del resto.

Who am I buying this summary from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller Hkane. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy this summary for $7.99. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

45,681 summaries were sold in the last 30 days

Founded in 2010, the go-to place to buy summaries for 14 years now

Empieza a vender
$7.99
  • (0)
  Añadir