100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary ATOMS AND ATOMIC STRUCTURE

Puntuación
-
Vendido
-
Páginas
70
Subido en
17-02-2025
Escrito en
2024/2025

Basic Postulates of Quantum Theory 1. Atoms and molecules can exist only in certain energy states. In each energy state, the atom or molecule has a definite energy. When an atom or molecule changes its energy state, it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition). 2. Atoms or molecules emit or absorb radiation (light) as they change their energies. The frequency of the light emitted or absorbed is related to the energy change by a simple equation. 2 mc hc hE   The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers. • Quantum numbers are the solutions of the Schrodinger, Heisenberg & Dirac equations. • Four quantum numbers are necessary to describe energy states of electrons in atoms – n, , m , ms          2 2 2 m r t V r t r t i r t t  ( , ) ( , ) ( , ) ( , )  Schroedinger 3-dimensional time independent equation Heisenberg’s uncertainty Equation Dirac’s quantum mechanical model 1. The Principal quantum number has the symbol – n. n = 1, 2, 3, 4, ...... “shells” n = K, L, M, N, ...... The electron’s energy depends principally on n and tells the average relative distance of the electron from the nucleus. – As n increases for a given atom, so does the average distance of the electrons from the nucleus. – Electrons with higher values of n are easier to remove from an atom. n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 l= 0 l = s l= 1 l = p l = 2 l = d l = 3 l = f n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 2. The azimuthal quantum number has the symbol . Ø describes the shape of the region of space occupied by the electron Ø When linked with n defines the energy of the electron, All wave functions that have the same value of both n and l form a subshell = 0, 1, 2, 3, 4, 5, .......(n-1) = s, p, d, f, g, h, .......(n-1) 3. The symbol for the magnetic quantum number is m . m = - , (- + 1), (- +2), .....0, ......., ( -2), ( -1), • If = 0 (or an s orbital), then m = 0. – There is only 1 value of m . Thus there is one s orbital per n value. n  1 • If = 1 (or a p orbital), then m = -1,0,+1. – There are 3 values of m . Thus there are three p orbitals per n value. n  2 • If = 2 (or a d orbital), then m = -2,-1,0,+1,+2. – There are 5 values of m . Thus there are five d orbitals per n value. n  3 • If = 3 (or an f orbital), then m = -3,-2,-1,0,+1,+2, +3. – There are 7 values of m . Thus there are seven f orbitals per n value, n – Theoretically, this series continues on to g,h,i, etc. orbitals. • Practically speaking atoms that have been discovered or made up to this point in time only have electrons in s, p, d, or f orbitals in their ground state configurations. • Each wave function with an allowed combination of n, l, and ml values describes an atomic orbital, a particular spatial distribution for an electron © 2006 Brooks/Cole - Thomson • Atomic orbitals are regions of space where the probability of finding an electron about an atom is highest. • s orbital properties: • There is one s orbital per n level. • = 0 • 1 value of m l= 0 l = s n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

Mostrar más Leer menos
Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
17 de febrero de 2025
Número de páginas
70
Escrito en
2024/2025
Tipo
Resumen

Temas

Vista previa del contenido

, Basic Postulates of Quantum Theory
1. Atoms and molecules can exist only in certain energy states. In each energy
state, the atom or molecule has a definite energy. When an atom or
molecule changes its energy state, it must emit or absorb just enough energy
to bring it to the new energy state (the quantum condition).
2. Atoms or molecules emit or absorb radiation (light) as they change their
energies. The frequency of the light emitted or absorbed is related to the
energy change by a simple equation.


hc
E  h   mc 2


, The allowed energy states of atoms and molecules can be described by sets of
numbers called quantum numbers.

• Quantum numbers are the solutions of the Schrodinger, Heisenberg &
Dirac equations.
2 
Schroedinger 3-dimensional  2     ( r , t )
  ( r , t )  V ( r , t )  ( r , t )  i
time independent equation 2m t
Heisenberg’s uncertainty
Equation

Dirac’s quantum
mechanical model




• Four quantum numbers are necessary to describe
energy states of electrons in atoms
– n, , m , ms

, 1. The Principal quantum number has the symbol – n.
n = 1, 2, 3, 4, ...... “shells”
n = K, L, M, N, ......
The electron’s energy depends principally on n and tells the average
relative distance of the electron from the nucleus.
– As n increases for a given atom, so does the average distance
of the electrons from the nucleus.
– Electrons with higher values of n are easier to remove from
an atom.
n=1
n=2
n=3
n=4
n=5
n=6
n=7
$13.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
jessybrown

Conoce al vendedor

Seller avatar
jessybrown City University New York
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
6
Miembro desde
2 año
Número de seguidores
5
Documentos
2352
Última venta
9 meses hace

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes