100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

NCSSM placement test questions with correct answers

Puntuación
-
Vendido
-
Páginas
27
Grado
A+
Subido en
22-03-2025
Escrito en
2024/2025

NCSSM placement test questions with correct answers

Institución
Math Placement
Grado
Math Placement










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Math Placement
Grado
Math Placement

Información del documento

Subido en
22 de marzo de 2025
Número de páginas
27
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

NCSSM placement test questions with g g g g




correct answers
g g




Tangent - intersects a circle in only 1 place.
g g g g g g g g




Secant - intersects a circle in 2 places.
g g g g g g g




Intersection of a tangent and a radius - form right angles when they intersect.
g g g g g g g g g g g g g




Equation of a circle - x minus h squared plus y minus k squared equals radius squared.
g g g g g g g g g g g g g g g g




Circumference of a circle - 2 times pi times radius or pi times diameter.
g g g g g g g g g g g g g




Area of a circle - pi times radius squared.
g g g g g g g g




Central angle - is equal to its intercepted arc.
g g g g g g g g




Inscribed angle - is equal to ½ its intercepted arc.
g g g g g g g g g




Angle formed by 2 chords intersecting in a circle - is equal to the sum of the arcs
g g g g g g g g g g g g g g g g g


divided by 2.
g g g




Angle formed by 2 secants - is equal to the major arc minus the minor arc divided by 2.
g g g g g g g g g g g g g g g g g g




Angle formed by a secant and a tangent - is equal to the major arc minus the minor arc
g g g g g g g g g g g g g g g g g g


divided by 2.
g g g




Angle formed by two tangents - is equal to the major arc minus the minor arc divided by
g g g g g g g g g g g g g g g g g


2.
g




Lengths of 2 intersecting chords - part of the first chord times the other part of the first
g g g g g g g g g g g g g g g g g


chord equals a part of the second chord times the other part of the second chord.
g g g g g g g g g g g g g g g g




Lengths of an intersecting diameter and chord that meet at right angles (perpendicular) -
g g g g g g g g g g g g g


if a diameter meets a chord at a right angle (perpendicular), the diameter divides the
g g g g g g g g g g g g g g g


chord into 2 equal parts.
g g g g g




Lengths of 2 intersecting secants - the whole length of the first secant times the outside
g g g g g g g g g g g g g g g


length of the first secant equals the whole length of the second secant times the outside
g g g g g g g g g g g g g g g g


length of the second secant.
g g g g g

,Lengths of an instersecting secant and tangent - the whole length of the first secant
g g g g g g g g g g g g g g


times the outside length of the first secant equals the length of the tangent squared.
g g g g g g g g g g g g g g g




Lengths of intersecting tangents - Tangents to a circle sharing a common vertex are
g g g g g g g g g g g g g


equal.
g




Angles - acute angles are less than 90 degrees. Right angles are 90 degrees. obtuse
g g g g g g g g g g g g g g


angles are between 90 and 180 degrees. Straight angles are 180 degrees and reflex
g g g g g g g g g g g g g g


angles are greater than 180 degrees.
g g g g g g




Adjacent angles - share a common vertex, a common side, but not common interior
g g g g g g g g g g g g g


points.
g




Complementary angles - 2 angles when added together that equal 90 degrees.
g g g g g g g g g g g


They do not have to be adjacent angles.
g g g g g g g




Supplementary angles - 2 angles when added together that equal 180 degrees.They do
g g g g g g g g g g g g


not have to be adjacent angles.
g g g g g g




Vertical angles - vertical angles are congruent.
g g g g g g




Alternate interior angles - alternate interior angles are congruent.
g g g g g g g g




Corresponding angles - corresponding angles are congruent. g g g g g g




Sum of the angles in a triangle - the 3 angles of a triangle add up to 180 degrees.
g g g g g g g g g g g g g g g g g g




Triangles classified by sides - scalene triangles have no equal sides.
g g g g g g g g g g


isosceles triangles have at least 2 equal sides.
g g g g g g g


equilateral triangles have 3 equal sides. g g g g g




Triangles classified by angles - acute triangles have 3 acute angles.
g g g g g g g g g g


right triangles have a 90 degree and 2 acute angles.
g g g g g g g g g


obtuse triangles have an obtuse and 2 acute angles.
g g g g g g g g




Exterior angle of a triangle - the exterior angle of a triangle equals the sum of the 2
g g g g g g g g g g g g g g g g g


opposite interior angles.
g g g




Isosceles triangles - sides opposite congruent angles are congruent.
g g g g g g g g


angles opposite congruent sides are congruent.
g g g g g




Triangle inequality theorem - the sum of 2 sides of a triangle must be greater than the
g g g g g g g g g g g g g g g g


3rd side.
g g

, Mid segment of a triangle - a mid segment connects the midpoint of 2 sides of a triangle
g g g g g g g g g g g g g g g g g


and is equal to ½ the side not containing the 2 midpoints.
g g g g g g g g g g g g




Median - bisects the opposite side into 2 congruent line segments.
g g g g g g g g g g


they meet in a triangle at a point called the centroid.
g g g g g g g g g g


median segments are in a ratio of 2 to 1.
g g g g g g g g g




Angle bisector - bisects an angle into 2 congruent angles.
g g g g g g g g g


they meet in a triangle at a point called the incenter.
g g g g g g g g g g




Altitude - makes a right angle with the opposite side.
g g g g g g g g g


they meet in a triangle at a point called the orthocenter.
g g g g g g g g g g




Perpendicular bisector - bisects and makes a right angle with a side of a triangle.They
g g g g g g g g g g g g g g


meet in a triangle at a point called the circumcenter.
g g g g g g g g g g




Similar triangles - angles in similar (∼) triangles are congruent.
g g g g g g g g g


sides are in proportion.
g g g


angles are in a proportion of one to one. (1:1)
g g g g g g g g g




Proving triangles similar - need only 2 angles to be congruent to probe 2 triangles
g g g g g g g g g g g g g g


similar.
g




Proving triangles congruent - can not be angle angle side (A.S.S.) or side side
g g g g g g g g g g g g g


angle(S.S.A.).
g




C.P.C.T.C. - corresponding parts of congruent triangles are congruent.
g g g g g g g g




Pythagorean theorem - a squared plus b squared equals c squared. g g g g g g g g g g


the hypotenuse is always c.
g g g g




Proving right triangles congruent - hypotenuse leg.
g g g g g g




Right triangle ratios -
g g g g




Slope - from left to right. up the hill is positive slope. down the hill is negative slope. a
g g g g g g g g g g g g g g g g g g


horizontal line has 0 slope and a verical line as an undefined slope.
g g g g g g g g g g g g g




Point slope form of a line - y minus y one equals slope (m) times x minus x one.
g g g g g g g g g g g g g g g g g g




Slope intercept form of a line - y equals slope (m) times x plus the y intercept (b)
g g g g g g g g g g g g g g g g g




Slope formula - y two minus y one divided by x two minus x one.
g g g g g g g g g g g g g g


rise over run.
g g
$14.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
FAEYOO1
1.0
(1)

Conoce al vendedor

Seller avatar
FAEYOO1 Strayer University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
2
Miembro desde
9 meses
Número de seguidores
0
Documentos
632
Última venta
4 meses hace
FAEYNURSING

Many students don\'t have the time to work on their academic papers due to balancing with other responsibilities, for example, part-time work. I can relate.

1.0

1 reseñas

5
0
4
0
3
0
2
0
1
1

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes