Hoofdstuk 3: Amino zuren, peptiden en eiwitten
3.1 aminozuren
°eiwitten uit covalent gebonden AZ’en (20 verschillende)(COOH + aminogroep+ restgroep)
°nog veel AZ’en in de natuur, maar worden niet door genen gecodeerd
°𝛼-koolstof is chiraal centrum (optisch actief), elk aminozuur heeft 2 enantiomeren
°L (amniogroep links)en D aminozuren: in natuur L want enkel L past in vorm eiwitten op ribosomen
°verklaring kader: -R groepen enkel pKa als er ionisatie is
-PI(=isoelectrisch punt): pH waarbij AZ netto geen lading heeft
-hydropathie index: energie om van milieu(apolair/polair) te wisselen
à >1= overwegend hydrofoob = apolair
-afkortingen goed kennen!
°belangrijkste eigenschap van R groep is polairiteit à verdeling in 5 groepen:
-apolair: *bijdrage aan stabiliteit door hydrofobe interacties
*cyclische structuur proline zorgt voor rigide structuur
-aromatisch: *apolaire R-groepen
*OH groep tyr kan H-bruggen vormen (belangrijk in enzymen)
*tyr, trp absorberen licht (alternerende dubbele/enkele binding)
lichtabsorptie door moleculen: lambert-beer wet:
-lichtabsorptie proportioneel met concnetratie opgeloste stof en weglengte
à logI0/I=A=ε.C.l (I0 = intensiteit invallend licht, I van weerkaatste)
-ε afh van chemische aard en golflengte
-polair ongeladen: *meer wateroplosbaar door H-bruggen
*cys: > is zwakke base en kan zwakke H-bruggen maken met O en N
> covalente S-S binding tussen 2 cys molecullen à cystine
-positief en negatief geladen: meest hydrofiel
°ook weinig voorkomende AZ belangrijke functies: -vb: selenocysteine (MEER VB SLIDE 11)
°AZ als zuren/basen: -AZ zonder ioniseerdbare R groep opgelost à zwitterion (base of zuur)
ð amforteer (kunnen positief of negatief geladen zijn)
°titratiecurves: -dissociatie (pKa) amino- en carboxylgroepen beïnvloed door intramol. interacties
3.2 peptiden en eiwitten
°2 aminozuren verbonden door peptidebinding met verlies van water
°reactie thermodynamisch interessanter maken door COOH te modificeren/activeren
°olygo-/polypeptide zijn kleine eiwitten
°N-terminus: amino residue op einde met vrije 𝛼-aminogroep en C-terminus: vrije carboxylgoep
°verbreken peptidebinding is exotherm
°conventie: AZ sequentie van NàC
3.2.1 soms andere chemische groepen dan AZ
°geconjugeerde eiwitten bevatten ook een niet-AZ groep (=prosthetische groep)
vb: lipoproteïne bevatten lipiden, glycoproteïnen suikergroepen, metalloproteïne metalen,…
3.3 werken met eiwitten
3.3.1 scheiden en zuiveren van ewitten
°om eiwitten te bestuderen moet je ze isoleren/zuiveren o.b.v. specifieke eigenschappen
°eerste stap is extractie: breken van weefsels en cellen
ð eventueel differentiële centrifugatie: scheiding naar densiteit
, ð wat boven 100000 g niet sedimenteert is oplosbaar
°oplosbaarheid soms verlaagt door toevoegen van zout
°toevoeging van protease inhibitoren want protease is enzym dat eiwitten afbreekt
3.3.1.1 kolomchromatografie
°aan poreus vast materiaal in kolom (vaste fase)(=matrix) wordt buffer toegevoegd (mobiele fase)
°proteïne opgelost in zelfde buffer bovenaan kolom geplaatst
ð beweegt door matrix à niet allemaal even snel dus scheiding
ð band wordt breder à concentratie daalt
°eiwitten niet zichtbaar dus fracties opvangen en bij 280 nm meten à bergen = eiwitten
3.3.1.2 ionenuitwisselingschromatografie
°gebaseerd op verschillen in ladingen bij een gegeven pH
°matrix is een synthetisch polymeer met geladen groepen
kation uitwisseling: matrix met anionen (opp partikels zijn negatief)
anion uitwisseling: matrix met kationen (opp partikels zijn positief)
°als opp ladingen negatief à netto + geladen eiwitten gaan interageren à vertraagt
3.3.1.3 size-exclusion chromatography
°scheiding op basis van grootte
°partikels met poriën, kleinere eiwitten gaan door alle poriën dus zijn trager
3.3.1.4 affiniteitschromatografie
°partikels hebben covalent gebonden ligand
°proteïne met affiniteit voor dit ligand binden à worden vertraagt
°interactie moet zo sterk en specifiek mogelijk zijn
à soms binding zo sterk dat moet spoelen met vrij ligand zodat het hieraan gaat binden en migreert
3.3.1.4.1 immuno-affiniteitschromatografie
antilichamen: eiwitten die binden aan epitoop (plek op eiwit)
è op partikels antilichamen hangen, binding specifiek aan eiwit (verwijderen door zout)
è probleem: weinig specifieke bindingen tussen eiwitten en antilichamen
3.3.2 scheiden en karakteriseren van eiwitten door elektroforese (=PAGE)
°gebaseerd op migratie van geladen proteïnen in een elektrisch veld
°bestaat uit gel van cross-linked polymeer (polyacrylamide)
à gedraagt zich als moleculaire zeef à vertraagt migratie proteïnen volgens lading/massa ratio
°elektrische potentiaal zorgt voor beweging macromoleculen
°methode om zuiverheid en molaire massa te bepalen: SDS toevoegen
à SDS bindt met AZ in vast ratio (1/2) à levert grote netto negatieve lading
à levert gelijkaardig massa/lading ratio op elke proteïne
à er treedt conformatieverandering op à beperkte invloed 3D structuur
°visualisatie proteïnen door kleuring (bindt aan proteïne, niet aan gel)
à vordering proces volgen door aantal proteïne banden die afnemen na elke stap
°elektroforische beweging afhankelijk van moleculaire massa Mr
à banden vergelijken met banden van gekende moleculaire massa’s
à grafiek log Mr en relatieve migratie is lineair
3.3.2.1 isoelectric focussng
°methode om pI punt van proteïne te vinden
°pH gradiënt door mengsel lage Mr zuren en basen (amfolieten) à verdeling zich over E-veld
°toevoegen proteïne à beweegt tot het pH tegenkomt = pI
twee-dimensionale electroforese: combinatie isolelectric focusing en PAGE
3.3.2.2 immunoblot=western blot
°detectie van een specifiek eiwit in een gel
1)transfer eiwitten naar nitrocellulose membraan (=blotting (lading geven))
2)membraan blokkeren met onspecifiek eiwit (anders plakt antlichaam overal)
3)binding primair antilichaam à binding secundair antilichaam à detectie met fluorescentie
°geen kleuring want anders elke keer antlichaam opnieuw binden
,3.3.3 niet-gescheiden eiwitten kwantifiseren
°in enzymen fractie totale massa proteïne gemeten i.f.v. katalytisch effect van enzym
=toename in snelheid van omzetten substraat bij aanwezig zijn enzym
°enzymen karakteriseren door: omstandigheden (pH), cofactoren, kinetiek,..
enzyeenheid (unit): hoeveelheid enzym die 1 𝜇mol S omzet per minuut
activiteit: hoeveelheid substraat omgezet per tijdseenheid, per volume eenheid
specifieke activiteit: totale activiteit per totale massa eiwit
°standaardcurve met gekende eiwitconcentratie:
°tabel op examen cijfers weggelaten en kunnen invullen/uitleggen:
-elke stap is een nieuwe zuiveringsstap
-van stap 1 naar 2 niet veel activiteit verloren
à stijging in specifieke activiteit
(weinig enzymen/eiwitten kwijt)
3.4 de structuur van eiwitten
°primaire structuur:alle covalente bindingen (peptide en disulfide), sequentie AZ
°secundaire structuur: terugkerende structurele patronen (a-helices en b-sheets)
°tertiare structuur: 3D plooiing eiwit quaternaire stuctuur: opbouw uit meerdere subeenheden
3.4.1 geschiedenis van het leven in de eiwitsequentie
°gensequenties en eiwitsequenties in verwante organismen zijn gelijkend
à hoe groter evolutionaire afstand, hoe meer ze gaan verschillen
°restgroepen die minder belangrijk zijn voor functie kunnen veranderen à sommige AZ belangrijker
ð verschillende evolutiesnelheden
laterale gentransfer: zeldzame gen overdracht (à beperkte gemeenschappelijke geschiedenis)
°eiwitfamilies hebben homologe eiwitten (paraloog: binnen de soort ; ortholoog: tussen soorten)
ð vinden door 2 sequenties te vergelijken, soms gaps maken zodat ze terug aligneren
signatuursequenties: karakteristieke sequenties die bij een taxonomische groep horen
à voorgesteld op 2 manieren: -consensussequentie: *elke buur gescheiden door –
*X = positie waar elk az kan voorkomen
*vierkante haken als er meerdere opties zijn
*ronde haken = hoe vaak na elkaar het komt
-sequentielogo
Hoofdstuk 4: driedimensionale structuur van eiwitten
4.1 overzicht van de eiwitstructuur
conformatie: ruimtelijke organisatie van alle atomen
ð enkele domineren door biologische omstandigheden (meest thermodynamisch stabiel)
natieve structuur: 1 van de functionele opgevouwen structuren
4.1.1 conformatie gestabiliseerd door zwakke interacties
stabiliteit: tendens om natieve structuur te behouden
°covalente bindingen zijn sterke bindingen (vb: disulfide binding)
°zwakke bindingen: H-bruggen, ionaire interacties
ð per gevormde H-brug wordt er H-brug tussen zelfde groep en water gebroken (∆𝐸 ≈ 0)
°conformatie met laagste vrije energie heeft de meeste zwakke bindingen (samen sterk)
°hdyrofobe interacties hebben meestal belangrijke bijdrage aan structuur
à hydrofobe residu’s meestal aan binnenkant eiwit
4.1.2 peptidebinding is rigide en vlak
°𝛼-C’s van naburige AZ gescheiden door 3 covalente bindingen: 𝐶* − 𝐶 − 𝑁 − 𝐶*
°peptide C-N binding is korter dan gewone C-N binding en ze zijn coplanair
ð wijst op resonantie op partiele deling va 2 paar elektronen à elektrische dipool
°6 atomen van peptide groep liggen in 1 vlak, met O van COOH trans t.o.v. H van amide
ð geen vrije rotatie rond C-N binding door partieel dubbele binding
°wel rotatie rond 𝑁 − 𝐶* en 𝐶* − 𝐶
4.2 secundaire eiwitstructuur
, 4.2.1 𝛼 helix is veevoorkomende secundaire structuur
°polypeptide ruggengraat gewonden rond denkbeeeldige as (3,6 AZ per winding en 5,4 Å/winding)
°R groepen wijzen naar buiten
°gestabiliseerd door H-brug tussen H atoom aan EN N en O
°niet alle AZ zijn geschikt voor helix en helix heeft een dipool door netto + en - partiële ladingen
4.2.2 in 𝛽 conformatie zijn polypeptiden georganiseerd in lagen
°C-ruggengraat vormt zigzag patroon (=𝛽 streng) à strengen zij aan zij vormen 𝛽 plaat
ð H-bruggen tussen aanpalende segmenten
°R-groepen alternerend op boven en ondervlak
°parallel (zelfde amino-tot-carboxyl oriëntatie) of antiparallel (omgekeerd)
ð bij parallel liggen H-bruggen niet recht
4.2.3 𝛽 bochten in eiwitten
°globulaire proteïne (compact) zitten veel AZ’en in 𝛽 bochten (tussen 𝛼 helices en 𝛽 platen)
°180° draaiing over 4 AZ’en met H)brug tussen AZ1 en 4
°vaak met proline (is al geknikt) of glycine (klein en compact)
4.3 tertiare en quaternaire eiwitstructuur
tertiare structuur: 3D organisatie van atomen in een enkel eiwit (subeenheid)
quaternaire structuur: 3D organisatie van subeenheden(functionele structuur)(multimeer/oligomeer)
°organisatie door zwakke bindingen en covalente bindingen (S-S)
4.3.1 fibrillaire eiwitten
°vezelvormig en langwerpig, uit gemengde sec structuren, bij enzymen en regulatorische eiwitten
°niet oplosbaar in water
4.3.1.1 𝛼 keratine
°voor sterkte in haar, wol, nagels, buitenste huidlaag,…
°type van intermediaire filamenten
°linksdraaiende coiled-coil: 2 parallele 𝛼-keratine strengen gedraaid rond elkaar
ð waar strengen raken = hydrofobe AZ residu’s à dichte stapeling van polypeptiden
°kunnen vervat worden in supramoleculaire complexen (vb: vorming haar)
°kracht door covalente cross-links (S-S) tussen polypeptiden
4.3.1.2 collageen
°in bindweefsel (pezen, kraakbeen, hoornvlies,..)
°linksdraaiend, 3AZ’en per winding
°coiled coil: 3 ‘super twisted’ 𝛼 ketens in rechtsdraaiende helix
°AZ-sequentie is herhalende tripeptide sequentie: Gly-X-Y met X vaak Pro, Y vaak 4-Hyp (hydroxyPro)
ð Gly is essentieel (oorzaak van verschillende genetische afwijkingen)
°cross-linking tussen Lys,HyLys of His in X en Y posities
°bij scheurbuik te weinig vitamine C: collageen niet goed aangemaakt (verlies tanden, nagels,…)
4.3.1.3 zijde
°predominante 𝛽 platen
°rijk aan Ala en Gly à laat dichte stapeling 𝛽 platen toe en interlocking van R groepen
°gestabiliseerd door H-bruggen tussen peptidebindingen en van der waals krachten tussen platen
ð platen samen door zwakke bindingen dus zijde is flexibel
4.3.2 globulaire eiwitten
°sferisch, meestal uit 1 type secundaire structuur en komt voor bij structuurfuncties
4.3.2.1 myoglobine
°eerste inzichten in 3D structuur globulare proteïne door X-straal diffractie van myoglobine
°kleine, O-bindende proteïne van spiercellen (slaat O op en transporteert het)
°bevat enkele polypeptide keten van 153 AZ’en en enkele ijzer protoporfyrine (heem) groep
°ruggengraat uit 8 vrij rechte segmenten van een 𝛼 helix onderbroken door plooien
°hydrofobe R groepen in binnenzijde eiwit, maar zeer compact, peptides vlak trans georiënteerd
°heem groep in holte: -Fe atoom in midden 2 bindingsplaatsen: 1 voor R groep van His en 1 voor O2