Chemie: algemene concepten I
H1: DE SAMENSTELLING VAN MATERIE
1.1 CHEMISCHE EN FYSISCHE EIGENSCHAPPEN
chemisch -> omzettingen van stof A naar stof B (bv. verbranding o.i.v. O)
fysisch -> verandering fysische vorm, zonder omzetting (bv. aggregatietoestand, kleur…)
1.2 ELEMENTEN, VERBINDINGEN EN MENGSELS
element: 1 atoomsoort --> elementen en verbindingen zijn zuivere stoffen
verbinding: 2/+ atoomsoorten (bep. verhouding)
mengsel: 2/+ zuivere stoffen fysisch gemengd -> geen chemische reactie/bindingen
1.3 MASSAWETTEN
1. BEHOUD VAN MASSA (Lavoisier, 1774) -> massa blijft onveranderd tijdens chemische reactie (uitz.: kernreacties)
2. CONSTANTE MASSAVERHOUDING (Proust, 1805) -> verhouding massa’s atomen in verbinding is constant
3. VEELVULDIGE VERHOUDINGEN (Dalton, 1804) -> massa’s atomen in moleculen verhouden zich als gehele getallen
1.4 ATOOMTHEORIE VAN DALTON
1. atoom = kleinste onderdeel materie -> fout: subatomaire deeltjes, kern, elektronen…
2. alle atomen van eenzelfde soort zijn hetzelfde -> fout: isotopen
3. verbinding = combinatie verschillende atomen met bepaalde verhouding -> juist
4. in een chemische reactie worden atomen herschikt zonder dat ze veranderen -> fout: kernreacties (= behoud van massa)
1.5 ATOMEN
- pos. kern en neg. elektronen
- Faraday (elektrolyse) -> geladen deeltjes
- Thomson -> afbuigen van elektronen in kathodestraal, liet toe massa te meten
- Rutherford -> bestaan atoomkern (1910) d.m.v. radioactiviteit uranium (α-deeltjes)
KARAKTERISTIEKEN
- naam en symbool
- atoomnummer Z = aantal p+ (= e-)
- massagetal A = aantal p+ + n-
- isotopen: AZX -> zelfde Z, verschillende A
- relatieve atoommassa -> drukt uit hoeveel keer de massa gemiddeld groter is dan de atomaire massa-eenheid -> PSE
= 1/12 abs. massa 12C = 1,66 . 10-24g
PSE -> horizontale periodes en verticale groepen, met gelijkende eigenschappen
1.6 ZUIVERE STOFFEN
- covalente stoffen -> gemeenschappelijke elektronen
- ionische stoffen -> elektronenoverdracht
CHEMISCHE FORMULE
- empirische formule: vereenvoudigde vorm
- moleculeformule: specifiek
- structuurformule: tekening
- relatieve moleculemassa Mr -> drukt uit hoeveel keer de massa groter is dan de atomaire massa-eenheid -> PSE
1.7 MOL EN MOLAIRE MASSA
- 1 mol van een stof bevat evenveel deeltjes als 12g 12C -> getal van Avogadro Na = 6,022.1023
m
- molaire massa (g/mol) = Mr =
n
1.8 MENGSELS
SOORTEN MENGSELS
- heterogeen- : colloïdaal- (kleine deeltjes, bv. aerosol), emulsie (vl + vl), suspensie (vl + v)
- homogeen- = oplossing: scheiding o.b.v. verschil in fys. eig. -> bv. filtratie, chromatografie, sublimatie ( vluchtige vaste stof)
SCHEIDING
- filtratie -> ∆grootte
- distillatie -> ∆vluchtigheid (mengsel verwarmen, vluchtige stof verdampt)
- kristallisatie -> ∆oplosbaarheid (afkoelen van warme oplossing -> vaste stof kristalliseert)
- extractie -> ∆oplosbaarheid (2 stoffen in 2 niet mengbare vloeistoffen -> verdelen zich over de vloeistoffen)
- chromatografie -> ∆oplosbaarheid (verschillende stoffen bewegen met verschillende snelheid over het oppervlak)
VERDUNNEN/MENGEN -> c1 . V1 = c2 . V2
Vdeel
VERDELEN -> ndeel = ngeheel .
Vgeheel
1
,SAMENSTELLING
- molfractie (X) : verhouding van het aantal mol van 1 bestanddeel op het totaal aantal mol van alle stoffen in het mengsel
- procentuele samenstelling
molprocent = molfractie x 100
massaprocent = massa van 1 bestanddeel in 100g mengsel
volumeprocent = V (mL) in 100mL mengsel
- ppm en ppb = massa% x104 of 107
- massaconcentratie : # g bestanddeel /liter mengsel
- molariteit : # mol bestanddeel /liter mengsel
- molaliteit : # mol bestanddeel /kg oplosmiddel
H2: ATOOMSTRUCTUUR EN PERIODIEKE EIGENSCHAPPEN
2.1 HET KWANTUMMECHANISCH ATOOMMODEL
- energie is gekwantificeerd -> kan slechts bepaalde waarden aannemen
- snelheid en plaats elektron kunnen niet gelijktijdig gekend zijn -> elektron beschreven als golf
VERGELIJKING VAN SCHRÖDINGER
d2 d2 d2 82m
+ + [E -V(x,y,z)(x,y,z)] = 0
+
dx2 dy2 dz2 h2
m = massa
h = cste van Planck = 6,626.10-34 J.s
E = totale gekwantificeerde energie
V = Epot
ψ(x,y,z) = golffunctie van het elektron in dat punt
---> oplossing = toegelaten energiewaarde
GOLFFUNCTIES
- radiaal gedeelte R en een angulair gedeelte Y (met R -> afstand tot kern en Y -> φ en θ t.o.v. de assen)
- ψ(x,y,z) = R(r)Y(φ,θ)
- waarden: pos. en neg. en knopen met waarde 0
WAARSCHIJNLIJKHEID
ψ2 -> waarschijnlijkheid om een elektron op een plaats aan te treffen
R24πr2 -> radiale waarschijnlijkheidsverdeling, meest waarschijnlijke afstand tussen elektron en kern
2.2 ATOOMORBITALEN EN KWANTUMGETALLEN
HOOFD- (n) - [0, n-1]
- n = 1, 2, 3… -> schil K, L, M… MAGNETISCH- ml
- bepaalt bijdrage energie elektron tot de energie-inhoud - bepaalt ruimtelijke oriëntatie
Z2 - [-l, l]
- Bij waterstof: E = − cst
n2
SPIN- ms
NEVEN- (l)
- -½ of +½
- l = 1, 2, 3, 4 -> subschil s, p, d, f
- bepaalt richting rotatie elektron rond eigen as
- bepaalt de vorm
REGELS ELEKTRONENCONFIGURATIE
1. UITSLUITINGSPRINCIPE PAULI -> in één atoomorbitaal max. 2 elektronen met tegengestelde spin
2. OPBOUWPRINCIPE -> PSE (1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f)
3. REGEL VAN HUND -> ongepaarde elektronenparen parallel
gevulde- en halfgevulde orbitalen -> meer stabiel -> onregelmatigheden (tabel 2)
IONEN: - anionen (neg.) -> elektron toevoegen
- kationen (pos.) -> elektron wegnemen (1. p buitenste schil – 2. s buitenste schil – 3. d op één na buitenste schil)
S-ORBITALEN
1s -> bol
2s -> grotere bol met radiale knoop (= sfeer met waarschijnlijkheid 0)
ns -> centrosymmetrisch met n-1 radiale knopen
P-ORBITALEN
- geen radiale symmetrie
- notatie: 2px, 2py, 2pz
- np -> 1 angulaire knoop en n-1 radiale knopen
D-ORBITALEN -> niet kennen!
2
, 2.3 HET ENERGIEDIAGRAM
- energiebijdrage van elektron is afhankelijk van kernlading, afscherming van andere e-, n en l
- laagst mogelijke energie = grondtoestand
- zelfde n -> zelfde energie --> gedegenereerde orbitalen
- excitatie: absorptie licht -> excitatie naar hoger energieniveau
∆E = hc/λ (voorbeeld op p.48)
IONISATIE ENERGIE (I.E.)
= energie nodig om elektron los te maken van kern in gasfase
- ∆E tussen E (grondtoestand) en E (n = ∞) = 2,18.10-18 J/atoom
- meer elektronen onttrekken -> I.E.↗
- Z↗ -> I.E.↗ (want I.E. is evenredig met Zeff)
EFFECTIEVE KERNLADING Zeff
- aantrekking tot kern en afstoting door elektronen
n↗ -> Zeff↘ (want grotere afstand tot kern -> beter afgeschermd)
Z↗ -> Zeff↗
- nevenkwantumgetal: penetratie-effect: s-elektron heeft grotere kans om dicht bij de kern te zitten dan p-elektron -> grotere Zeff
ELEKTRONENAFFINITEIT E.A.
= ∆E bij vorming anion uit neutraal atoom in gasfase
- neg. -> er komt energie vrij
- 2de E.A. is energie verhogend (pos.)
- Zeff↗ -> E.A.↗
ELEKTRONEGATIVITEIT E.N.
= maat voor neiging van gebonden atomen om elektronen naar zich toe te trekken
I. E. – E. A.
E. N. =
2
PSE: stijgt van links->rechts en van onder->boven
2.4 MAGNETISCHE EIGENSCHAPPEN VAN ATOMEN
- ↑ en ↓ heffen elkaar op
- aanwezigheid ongepaarde elektronen -> (spin-)magnetisch atoom
- paramagnetische stoffen: aangetrokken dr uitwendig magneetveld t.g.v. aanwezigheid ongepaarde elektronen (bv. 11Na-damp)
- diamagnetische stoffen: ondervinden geen aantrekking of worden licht afgestoten door uitwendige veld (bv. 80Hg-damp)
2.5 PERIODIEKE EIGENSCHAPPEN VAN ATOMEN (bepaald door valentie-elektronen)
- Hoofdgroepen: valentie-elektronen nsa npb
- Edelgassen (groep VIIIA): s en p-orbitaal van buitenste schil volledig gevuld (8 elektronen) = edelgasconfiguratie = zeer stabiel.
- Alkalimetalen (groep IA): edelgasconfiguratie + 1 valentie-elektron ns1
- Aardalkalimetalen (groep IIA): idem maar 2 valentie-elektronen ns2
- Boorgroep (groep IIIA): (pseudo)edelgasconfiguratie + 3 valentie-elektronen
- Pseudo-edelgasconfiguratie: s, p, en d-orbitalen van buitenste schil volledig gevuld (18 elektronen).
- Vierde tot zevende hoofdgroep: (pseudo)edelgas-configuratie + 4-7 valentie-elektronen
- Transitie-elementen: het laatste elektron komt in een d-orbitaal
- Inner-transitie-elementen: laatste elektron komt in een f-orbitaal (lanthaniden (4f) en actiniden (5f))
2.6 AFMETINGEN ATOMEN EN IONEN
- ψ is nooit 0
- tabel 2: covalente-/ion-/atoomstralen
- afhankelijk van n en Zeff
Z↗ -> r↘ (uitzondering: transitiemetalen -> r cst)
pos. ion -> r kleiner
neg. ion -> r groter
3