Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Samenvatting Differentiaalvergelijkingen €2,99   Ajouter au panier

Resume

Samenvatting Differentiaalvergelijkingen

 10 vues  0 fois vendu
  • Cours
  • Établissement
  • Book

Korte maar krachtige samenvatting, compleet en zonder dubbelingen, met duidelijke voorbeelden als geheugensteun.

Dernier document publié: 1 année de cela

Aperçu 2 sur 4  pages

  • Non
  • H 9
  • 6 septembre 2021
  • 14 février 2023
  • 4
  • 2021/2022
  • Resume
avatar-seller
1. Conventies
2. Definities
3. Afgeleide
4. Toegevoegde constante
5. Expliciet en impliciet
6. Scheiden van variabelen
7. Methode van Euler
8. Oplossingsmethodes
8.1. Met x
8.2. Zonder x
8.3. Integrerende factor
8.4. Lissajous




1/4 © Peter Zomerdijk

, 1. Conventies

• voorbeelden zijn omkaderd

• DV : differentiaalvergelijking
• dx : differentiaal
dy
• y · dx = y'(x) = y' : de afgeleide van y naar x waarbij y een functie van x is

2. Definities
• DV : een functie waarin de onafhankelijke variabele x en de
afhankelijke variabele y en diens afgeleide(n) naar x voorkomen

y = x + y' + y''
• Orde van een DV : de hoogste afgeleide in die DV
• Graad van een DV : de hoogste macht van een afgeleide in die DV
• Lineaire DV : DV met graad 1
• Differentiaalquotiënt : synoniem voor de afgeleide

3. Afgeleide
d
y = xa + b ⇔ y' = dx (xa + b) = ax (a−1)

4. Toegevoegde constante
dy
• ∫ y′ = ∫ dx = ∫ ax (a−1) ⇔ ∫ dy = ∫ ax (a−1) dx ⇔ y = xa + C
• door de niet gedefinieerde constante C is de oplossing van een DV een oneindig aantal functies
zoals ook de integraal van een functie dat is
• C kan alleen berekend worden wanneer een punt bekend is, dit levert de particuliere oplossing
• C kan op een andere positie geplaatst worden door meerdere constanten te definiëren
1
y' = x ⇔ y = ln|x| + C1
Definieer C1 = ln|C2| waardoor y = ln|x| + ln|C2| = ln|C2 x|


5. Expliciet en impliciet
Wanneer in de oplossing van de DV y uit te drukken is in x is de oplossing expliciet, anders impliciet.

Expliciet: y = Cex Impliciet: sin(y) = xy + C


6. Scheiden van variabelen
Breng de ene variabele aan de ene kant van de vergelijking en de andere aan de andere kant
dy dy dy
y' = 6xy ⇔ dx = 6xy ⇔ = 6x dx ⇔ ∫ = ∫ 6x dx ⇔ ln|y| = 3x2 + C1
y y
2
Stel C1 = ln|C2| dan y = C2 e3x




2/4 © Peter Zomerdijk

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur PAJZ. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €2,99. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

72042 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€2,99
  • (0)
  Ajouter