Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
samenvatting mechanica van materialen €2,99
Ajouter au panier

Resume

samenvatting mechanica van materialen

1 vérifier
 135 vues  9 fois vendu

volledige samenvatting van de lessen en slides van mechanica van materialen

Aperçu 4 sur 83  pages

  • 11 octobre 2021
  • 83
  • 2020/2021
  • Resume
Tous les documents sur ce sujet (6)

1  vérifier

review-writer-avatar

Par: Davinyae • 2 année de cela

avatar-seller
jj92
Mechanica van materialen
H1 Scalaire, vectoren, ..
Wiskundig instrumentarium
Hoe geraak ik in het centrum van Brussel?
Antwoord: Loop 10 km ??
=> onvoldoende informatie!
We moeten ook de richting specificeren!
Een wiskundige grootheid met een grootte (amplitude), een richting en een zin
=> VECTOR


Vector

• Een grootheid met een amplitude en een richting, bijvoorbeeld plaats, kracht en
moment
• Wordt voorgesteld door een letter met een pijl erboven,
• De grootte of amplitude wordt voorgesteld door
• Bij dit onderwerp wordt een vector voorgesteld door A en zijn grootte (positieve
grootheid) als A




Vectorbewerkingen
Een vector vermenigvuldigen met en delen door een scalair
Product van vector A en scalair ais opnieuw een vector aA met grootte =IaAI maar met
eenzelfde of tegengestelde richting als vector A afhankelijk van het feit dat a positief dan wel
negatief is.
Indien a=0 dan is aA de nulvector.
Verder hebben we de volgende eigenschappen:
- (a+b)A = aA + bA
-a(A+B) = aA + aB
-a(bA) = (ab)A

,Vectoroptelling
Optelling van twee vectoren A en B levert een resultante R op, op grond van de
parallellogramregel
De resultante R kan worden bepaald met de driehoeksregel
Commutatieve eigenschap: R = A + B = B + A
Speciaal geval: de vectoren A en B zijn collineair (hebben beide dezelfde werklijn)




Vectoraftrekking
Speciaal geval van optelling, bijvoorbeeld
R’ = A – B = A + (–B)
Regels van vectoroptelling zijn van toepassing




Scalair product van 2 vectoren a en b

Is een scalair gegeven door 𝑎̅.𝑏̅ |a b cos|

Waarbij  de kleinste hoek is tussen a en b
Het scalair product is commutatief “ a.b=b.a “ en distributief “ aa. [bb+gc]= ab(a.b) + ag(a.c) “
Een belangrijke eigenschap is dat wanneer scalair product van 2 vectoren
a en b zijnde a.b=0 dan staan de 2 vectoren loodrecht op elkaar.
Het scalair product van een vector met zichzelf is gelijk aan het kwadraat van zijn lengte:


Een andere belangrijke eigenschap is dat de projectie van een vector u op de richting van
een eenheidsvector e gegeven wordt door: u.e
Hier volgt ook uit de elke vector u ontbonden kan worden in een component parallel aan
een eenheidsvector e en een component loodrecht op e, en dit volgens de regel:
u= (u.e)e + [u – (u.e)e]

,Vectorieel product van 2 vectoren is opnieuw een vector waarvan de grootte gegeven wordt

door waarbij ‘’ de kleinste hoek is tussen a en b




De grootte van axb is gelijk aan de oppervlakte van de parallellogram gevormd door de
vectoren a en b. De richting van deze nieuwe vector is loodrecht op het vlak gevormd door a
en b en wordt bepaald door de kurkentrekkerregel.




Het vectorieel product heeft de volgende eigenschappen:




Tripel Scalair product (gemengd product) van 3 vectoren u, v, w is gegeven door:



Indien het set van vectoren rechtshandig is dan wordt het volume van de parallellepipedum
gevormd door deze 3 vectoren gegeven door het gemengd product.
Om dit in te zien veronderstellen we dat en de eenheidsvector is in de richting van (u x v).
De projectie van w op (u x v) is dan h=w.e

, Cartesische vectornotatie
Rechtsdraaiend coördinatenstelsel
Een cartesisch coördinatenstelsel wordt rechtsdraaiend genoemd als:

• De duim van de rechterhand in de richting van de positieve z-as wijst
• De z-as bij het 2D-probleem loodrecht uit het papier gericht zou zijn.




Beschouwen de vector v in een rechthoekig cartesisch assenstelsel Oxyz met als
basisvectoren het set eenheidsvectoren e1, e2, e3

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur jj92. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €2,99. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

52928 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€2,99  9x  vendu
  • (1)
Ajouter au panier
Ajouté