Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Samenvatting Alle hoofdstukken van MELA stuk voor stuk helder en bondig uitgelegd €6,99   Ajouter au panier

Resume

Samenvatting Alle hoofdstukken van MELA stuk voor stuk helder en bondig uitgelegd

 56 vues  0 fois vendu

Elk thema wordt samengevat en wat de samenvatting zo handig maakt is dat er linken gelegd worden tussen de verschillende thema's die vaak belangrijk. De linken zijn vaak belangrijk om in te zien maar moeilijk wanneer je niets ter beschikking hebt om vlug eens op terug te blikken. Deze samenvatting ...

[Montrer plus]
Dernier document publié: 3 année de cela

Aperçu 3 sur 24  pages

  • 7 décembre 2021
  • 10 décembre 2021
  • 24
  • 2020/2021
  • Resume
Tous les documents sur ce sujet (1)
avatar-seller
Pietverstraete
Vectoren (MTK)


1. Vrije vector (= vector) elke vector met eenzelfde norm en richting is gelijk dus invariant onder
translatie
2. Bewerkingen op Vectoren
a. Optelling (commutatieve groep) *
i. Commutatief
ii. Associatief
iii. Neutraal element
iv. Symmetrisch element
b. Vermenigvuldiging met scalairen*
i. 2 soorten distributiviteit
ii. Associativiteit
iii. Neutraal element
c. * deze 2 voorgaande bewerkingen met bijhorende eigenschappen vormen een
algebraïsche structuur van een lineaire ruimte
d. Lineaire combinaties
i. LOF
ii. LAF
iii. Basis  bepaald aantal vectoren dat LOF is en samen een ruimte opspannen
elke vector in deze ruimte kan geschreven door een specifieke lineaire
combinatie van de basisvectoren
e. Scalair product van vectoren
i. NIET ASSOCIATIEF
ii. Niet commutatief over meer dan 2 vectoren
iii. Vergeet nooit dat een scalair product een getal is en geen vector niet meer
f. Vectorieel product van vectoren ( ⃗v X ⃗ w ) = u⃗
i. u⃗ Staat loodrecht op ⃗v en op ⃗ w
ii. ( ⃗v , ⃗
w , u⃗ ¿ vormen een RHONB
iii. || X ⃗
v
⃗ w || = || ⃗v ∨|∙∨¿ ⃗
w|∨sin ⁡(θ) met θ de hoek tussen de vector v en w
(dus MAW als u =v dan is de hoek 0 en is de norm van het vectorieel product
ook 0) Bovendien is dit ook de numerieke waarde van de oppervlakte van het
parallellogram die v en w opspannen
iv. Distributiviteit
v. ⃗v X ⃗ w =−⃗ w X ⃗v dus omgekeerde commutativiteit l(nog logisch want (
⃗v , ⃗
w , ⃗v X ⃗w) levert een RHONB maar ( ⃗v , ⃗
w ,⃗
w X ⃗v ) levert een LHONB dat
minnetje moet ergens vandaan komen voor in de determinant e)



| |
e1 e2 e3
vi. ⃗v X ⃗
w =det ⁡ v 1 v 1 v 1 Let hierbij op dat e1 enz. vectoren zijn en dat v en
w1 w 1 w 1
w richtingsgetallen zijn
g. Gemengd product  u⃗ ∙ ¿)
i. Komt een scalair uit geen vector is uiteindelijk gewoon een verborgen scalair
product




1

, | |
u 1 u2 u3
ii. Algebraïsch is dit te vinden : u⃗ ∙ ( ⃗v X ⃗
w ) =det ⁡ v 1 v 1 v1
w 1 w1 w1
iii. u⃗ ∙ ¿) = ⃗w ∙ ¿) =…
iv. u⃗ ∙ ¿) = - ⃗v ∙ ¿) =…
v.
vi. Gemengd product is 0 als en slecht als een van de drie vectoren LAF is van de
andere. (Logisch)
vii. Indien het gemengd product niet gelijk is aan 0 zijn alle vectoren LOF en
spannen deze 3 vectoren een lichaam op het resultaat van het gemengd
product geeft dan het volume van het opgespannen lichaam
viii. Het georiënteerde volume dat we uitkomen zal pos zijn als u langs dezelfde
kant van het vlak opgespannen door vw ligt als ⃗v X ⃗w
ix. Bovenstaande eigenschap impliceert dat de determinant van een
orthogonale basis +1 is wan deze RONB is en -1 wanneer deze LONB is
3. Om te testen of een bepaalde basis orthogonaal is kan je de matrix maken bestaande uit de
kentallen van de basisvectoren indien A = A T dan is deze basis ONB
4. Determinant van orthonormale basis +1RHONB of -1LHONB
5. Volume opgespannen door 3 vectoren vormt een parallellepipedum en heeft als volume het
gemengd product |u∙ (v x w)| wat op zijn beurt gelijk is aan de Det(u|v|w) wil je de
hoogte van het parallellepipedum berekenen deel gewoon door de opp. van het grondvlak
(vind je door ||u x v|| te bereken)
6. Scalair product 2 manier om simpel uit te werken:
a. Gewoon overeenkomstige coördinaten vermenigvuldigen
b. Normen en ingesloten hoek vermenigvuldigen




Wijziging van basis (coördinaattransformatie want je kan een super random rechte zomaar simpele
coördinaten geven)
S = coördinaten van een punt ten opzichte van de oorspronkelijke basis (dus meestal tegenover
(1,0,0),(0,1,0),(0,0,1))
A = transformatie Matrix (wordt ook, overgangsmatrix genoemd) wordt gevonden door in de
kolommen van de matrix de richtingsgetallen te zetten van de nieuwe basis tegenover de
oorspronkelijke basis dus concreet komt het neer dat het eerste basiselement van de nieuwe basis
bv kentallen (1,2,0) heeft dan weten we dat in de eerste kolom van A het volgende zal staan 1 keer
e1 en 2 keer e2en 0 keer e3
S’ = coördinaten van hetzelfde punt ten opzichte van de nieuwe basis ()
Daarna is het nog opletten geblazen want dan wordt alles uitgedrukt in functie van de nieuwe
basis dus een simpele basisvector die oorspronkelijk bv (1,0,0) was kan zomaar veranderd zijn in
een complex voorschrift bv(2,6,15)
S = A∙S’ maar dat is meestal juist niet wat we nodig hebben want we willen oude coördinaten naar
nieuwe coördinaten veranderen daardoor moeten we de inverse nemen van A dit moet mogelijk
zijn want A is een basis (al dan niet orthogonaal) dus is de determinant zeker niet gelijk aan 0. Als
we deze matrix geïnverteerd hebben zijn we eigenlijk al bezig met een affiene transformatie want
dan zijn we eigenlijk bezig met het oorspronkelijke punt te verplaatsen naar het nieuwe punt S’
hiervoor behouden we dan eenzelfde basis in tegenstelling tot de coördinaattransformatie


2

, 3

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur Pietverstraete. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €6,99. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

59325 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€6,99
  • (0)
  Ajouter