Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Samenvatting Medische fysica €10,49
Ajouter au panier

Resume

Samenvatting Medische fysica

 47 vues  0 fois vendu

Samenvatting Medische Fysica

Aperçu 4 sur 50  pages

  • 8 décembre 2021
  • 50
  • 2020/2021
  • Resume
Tous les documents sur ce sujet (30)
avatar-seller
RachelV
Medische fysica en radioprotectie HOORCOLLEGE 1 (22/09)


Basiskennis

➔ Wiskundige basis (Vectoren, afgeleiden vs. integralen, eenvoudige goniometrische
functies

Beoogde competenties

➔ Relaties met de biomedische wereld leggen



Groepsopdracht 10 oktober – 8 december (voorzitter rol: ‘’Wat is het doel van deze
vergadering?’’)
Tussentijds toets 29 oktober – 2 november


H1(hoofdstuknummering volgens boek Physics)
Fysica: verklaring van gedrag van straling en materie.

Wetten liggen vast via wiskundige formules.

Grootheden kunnen alleen bij elkaar opgeteld / van elkaar afgetrokken worden indien ze eenzelfde
dimensie hebben, evenals dat aan beide zijden van het ‘’=-teken’’ een zelfde dimensie moet zijn.

Mechanica = studie die krachten en hun effecten op (biologische) sradioystemen onderzoekt.

➔ Kinematica = beschrijving van beweging;
➔ Dynaminca = studie van krachten;
➔ Vloeistoffen en gassen;
➔ Trillingen;
➔ Golven


Hypothese / Experimentele
H2 theorie waarnemingen

1-dimensionaal: verplaatsing over x-as

➔ Vastleggen oorsprong;
➔ Vastleggen positieve zin (richting);
➔ Verplaatsing of afgelegde weg (Δx)
𝑥
Snelheid = afgelegde weg over een tijdsinterval 𝑣= 𝑡
(Negatieve snelheid is
verplaatsing in tegengestelde richting)
𝑣
Versnelling = snelheidsverschil over een tijdsinterval 𝑎= 𝑡
(Negatieve versnelling
betekent vertraging, of versnelling bij verplaatsing in tegengestelde richting)

, HOORCOLLEGE 2 (23/09)

Snelheid door 0 → verandering van richting (negatieve versnelling) → berghyperbool in
afstandsgrafiek
Constante snelheid → versnelling = 0 (ongeacht de richting) → lineaire lijn (rechte)
Van negatieve naar positieve versnelling in lineaire lijn → positieve versnelling (horizontale lijn) →
negatieve afstand gaat richting 0 (geen lineaire lijn, want versnelling)

Eenparige versnelde rechtlijnige beweging = rechtlijnige beweging met constante versnelling a
𝑑𝑣
snelheid: 𝑎 = ,
𝑑𝑡
𝑡
Integratie van dv = a ∗ dv 𝑣 = ∫𝑡 𝑎 ∗ 𝑑𝑡 = 𝑎 ∗ 𝑡 + 𝐶 stel op t = 0 s, v = v0, dan is C = V0
0
Levert → 𝑣 = 𝑣0 + 𝑎 𝑡 (1) Want V is niet constant
𝑑𝑥
Positie: 𝑣 = 𝑑𝑡
,
𝑡 𝑡 1
Integratie van 𝑑𝑥 = 𝑣 ∗ 𝑑𝑡 𝑥 = ∫𝑡 𝑣 ∗ 𝑑𝑡 = ∫𝑡 (𝑣0 + 𝑎𝑡)𝑑𝑡 𝑥 = 𝑣0 𝑡 + 𝑎𝑡 2 + 𝐶 ′
0 0 2
stel op t = 0 s, x = x0, dan is C’=x0
1
Levert → 𝑥 = 𝑥0 + 𝑣0 𝑡 + 2 𝑎𝑡 2 (2)

(1) en (2) zijn de basisformules, HERSCHRIJVEN!
→ Speciaal geval: versnelling a = 0 ms-2 = eenparige rechtlijnige beweging

Variabelen Vergelijking
Snelheid, tijd, versnelling 𝑣 = 𝑣0 + 𝑎𝑡
Initiële, finale en gemiddelde snelheid 1
𝑣𝑎𝑣 = (𝑣0 + 𝑣)
2
Positie, tijd, snelheid 1
𝑥 = 𝑥0 + (𝑣0 + 𝑣)𝑡
2
Positie, tijd, versnelling 1
𝑥 = 𝑥0 + 𝑣0 𝑡 + 𝑎𝑡 2
2
Snelheid, positie, versnelling 𝑣 2 = 𝑣0 2 + 2𝑎(𝑥 − 𝑥0 ) = 𝑣0 2 + 2𝑎∆𝑥

Vrije val = de beweging van een object dat enkel onder invloed is van de zwaartekracht en geen
enkele andere kracht (zwaartekracht op aarde g = 9.81 ms-2).
→ positieve x-as met neerwaartse beweging: a = g

Vrije val na opwaartse worp: v0 ≠ 0 vanuit oorsprong (x0 = 0)
→ positieve x-as met opwaartse beweging: a = - g

➔ Hoogste punt wordt bereikt bij v = 0
➔ Begin- en eindpunt bij x = 0 → t = tval
➔ vval = v0
1
Vrije val: 𝑥 = 2 𝑔𝑡 2 𝑣 = 𝑔𝑡 𝑣 = √2𝑔𝑥
1
Vrije val na opwaartse worp: 𝑣0 = 𝑔𝑡𝑣𝑎𝑙
2

,H3
Vectoren:

➔ Scalairen vs. vectoren
o Scalair = een fysische grootheid die enkel uitgedrukt wordt in termen van één enkel
reëel getal.
o Vector = een fysische grootheid die gekarakteriseerd wordt door een grootte, zin en
richting.
➔ Eenheidsvectoren 𝐼⃗= dimensieloze vector met grootte 1, die langs de as van het gekozen
coordinatiestelsel ligt.
𝐴 ⃗
o Is 𝐴⃗ een vector met absolute waarde dan A ≠ 0, dan is 𝐴 de eenheidsvector in
dezelfde richting met als 𝐴⃗, voorgesteld als ⃗⃗⃗⃗⃗
1𝐴
⃗ ⃗
o Elke vector 𝐴 te schrijven als: vector 𝐴 = 𝐴1𝐴⃗⃗⃗⃗⃗
o Eenheidsvectoren langs positieve x-, y- en z-assen van een rechthoekig stelsel: ⃗⃗⃗⃗⃗
1𝑥 ,
⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗
1𝑦 , 1𝑧
➔ Componenten van vectoren
o Carthesische coordinaten (Ax, Ay): (Sol/Cal/Toa)
▪ Projectie op x-as: Ax ; x-component 𝐴𝑥 = 𝐴 cos 𝜃 (aanliggende/schuine)
▪ Projectie op y-as: Ay ; y-component 𝐴𝑦 = 𝐴 sin 𝜃 (overstaande/schuine)
o Poolcoordinaten (│A│, 0)

▪ Grootte/Norm A: |𝐴| = √𝐴𝑥 2 + 𝐴𝑦 2
▪ Hoek 𝜃 (tegenwijzerzin – vanaf de x-as)
tan(𝜃)=𝐴𝑦 𝐴
𝜃 = 𝑏𝑔𝑡𝑎𝑛 ( 𝑦 )
𝐴𝑥 𝐴𝑥
𝐴𝑦
𝜃 = 𝑏𝑔𝑠𝑖𝑛( )
𝐴
𝐴𝑥
𝜃 = 𝑏𝑔𝑐𝑜𝑠( )
𝐴
➔ Optellen, aftrekken vectoren;
o 𝐶⃗ = 𝐴⃗ + 𝐵 ⃗⃗ + 𝐴⃗
⃗⃗ = 𝐵

▪ Grootte/Norm: |𝐶| = √𝐶𝑥 2 + 𝐶𝑦 2
𝐴
▪ Hoek 𝜃 met de x-as: 𝜃 = 𝑏𝑔𝑡𝑎𝑛 (𝐴𝑦 )
𝑥
o Veschil = som met de negatieve vector (zelfde grootte, richting, tegengestelde zin)
⃗⃗ = 𝐴⃗ − 𝐵
𝐷 ⃗⃗ = 𝐴⃗ + (−𝐵 ⃗⃗)
➔ Scalair en vectorieel product
o Vermenigvuldigen van een vector 𝐴⃗ met een reëel getal k: 𝐴 ≡ (𝐴𝑥 , 𝐴𝑦 , 𝐴𝑧 )
𝑘𝐴⃗ = 𝑘(𝐴𝑥 , 𝐴𝑦 , 𝐴𝑧 ) = (𝑘𝐴𝑥 , 𝑘𝐴𝑦 , 𝑘𝐴𝑧 )
▪ Grootte/Norm: |𝑘𝐴⃗| = |𝑘||𝐴⃗| = |𝑘|𝐴
o Scalair product (dot product) = een getal (GEEN vector), laat een verband zien tussen
twee vectoren
▪ Grootte: 𝑣⃗ ∗ 𝑤 ⃗⃗⃗|𝑐𝑜𝑠𝜃 = 𝑣𝑤𝑐𝑜𝑠𝜃 → Te allen tijde absolute waarde
⃗⃗⃗ = |𝑣⃗||𝑤
van de vectoren invullen, dus geen negatieve waarden.
⃗⃗∗𝑤
𝑣 ⃗⃗⃗
▪ Hoek: 𝜃 = 𝑏𝑔𝑐𝑜𝑠 ( 𝑣𝑤 )

, ▪ 𝜃 = 90° → 𝑐𝑜𝑠𝜃 = 0, dus 𝑣⃗ ∗ 𝑤 ⃗⃗⃗ = 0
o Vectorieel product = complex verband tussen 3 vectoren, levert een vector
▪ 𝐴⃗ ∗ 𝐵 ⃗⃗ = 𝐶⃗
▪ Grootte: |𝐶⃗| = 𝐴𝐵 𝑠𝑖𝑛𝜃 𝜃= de kleinste hoek van 𝐴⃗ naar 𝐵
⃗⃗
• Richting van 𝐴⃗ ∗ 𝐵 ⃗⃗ loodrecht op het vlak gevormd door de vectoren
𝐴⃗ en 𝐵
⃗⃗
• De zin van 𝐴⃗ ∗ 𝐵⃗⃗ wordt bepaald met de rechterhandregel, d.i. draai
met gekromde vingers via de kleinste hoek van 𝐴⃗ naar 𝐵 ⃗⃗, dan wijst
de duim in de richting van 𝐴⃗ ∗ 𝐵⃗⃗ (rechterhand).
▪ Evenwijdige vectoren 𝜃 = 0° 𝑜𝑓 180° → 𝑠𝑖𝑛𝜃 = 0
➔ Positie-, snelheids- en versnellingsvectoren
o Positie-, verplaatsingsvectoren
▪ Plaatsvector: begint in oorsprong, geeft aan waar de positie zich bevindt,
bestaande uit een x- en y-component.
▪ Verplaatsingsvector: vector tussen begin en eindpunt ∆𝑟⃗ = ⃗⃗⃗⃗ 𝑟𝑓 − ⃗𝑟⃗𝑖
o Snelheidsvectoren
▪ Gemiddelde snelheidsvector, 𝑣⃗𝑎𝑣
∆𝑟⃗
• Gelegen langs ∆𝑟⃗ 𝑣⃗𝑎𝑣 =
∆𝑡
▪ Ogenblikkelijke snelheidsvector, 𝑣⃗
∆𝑟⃗ 𝑑𝑟⃗
• Wijst in de richting van de beweging 𝑣⃗ = lim ∆𝑡 = 𝑑𝑡
𝑡→0
𝑒𝑒𝑛ℎ𝑒𝑖𝑑 𝑣⃗: [𝑚/𝑠]
o Versnellingsvector
▪ Gemiddelde versnelling vector, 𝑎⃗𝑎𝑣
• Gelegen langs ∆𝑣⃗
⃗⃗
∆𝑣
• Niet perse naar de bewegingsrichting 𝑎⃗𝑎𝑣 = ∆𝑡
▪ Ogenblikkelijke versnelling vector, 𝑎⃗
⃗⃗
∆𝑣 ⃗⃗
𝑑𝑣
• Kan in alle richtingen wijzen 𝑎⃗ = lim =
∆𝑡→0 ∆𝑡 𝑑𝑡

𝑒𝑒𝑛ℎ𝑒𝑖𝑑 𝑎⃗: [𝑚/𝑠 2 ]




H4
2-dimensionale beweging = beweging in 2D. 2D levert beschrijving van meer fysische fenomenen.
Basis idee is dat horizontale en verticale bewegingen onafhankelijk van elkaar zijn. Elke beweging
gaat verder alsof de beweging die loodrecht hierop niet gebeurt.

➔ Basisvergelijking kogelbaan beweging
➔ Horizontale lancering
➔ Willekeurige lanceringshoek
➔ Karakteristieken kogelbaan beweging

Kogelbaan = parabolische verloop, projectiel beweging

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur RachelV. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €10,49. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

53068 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€10,49
  • (0)
Ajouter au panier
Ajouté