Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4,6 TrustPilot
logo-home
Examen

TEST BANK FOR Convex Optimization 1st Edition By Stephen Boyd (Solution Manual)

Note
-
Vendu
-
Pages
303
Publié le
30-01-2022
Écrit en
2021/2022

Exam (elaborations) TEST BANK FOR Convex Optimization 1st Edition By Stephen Boyd (Solution Manual) Convex Optimization Solutions Manual Stephen Boyd Lieven Vandenberghe January 4, 2006 Chapter 2 Convex sets Exercises Exercises De nition of convexity 2.1 Let C  Rn be a convex set, with x1; : : : ; xk 2 C, and let 1; : : : ; k 2 R satisfy i  0, 1 +    + k = 1. Show that 1x1 +    + kxk 2 C. (The de nition of convexity is that this holds for k = 2; you must show it for arbitrary k.) Hint. Use induction on k. Solution. This is readily shown by induction from the de nition of convex set. We illustrate the idea for k = 3, leaving the general case to the reader. Suppose that x1; x2; x3 2 C, and 1 + 2 + 3 = 1 with 1; 2; 3  0. We will show that y = 1x1 + 2x2 + 3x3 2 C. At least one of the i is not equal to one; without loss of generality we can assume that 1 6= 1. Then we can write y = 1x1 + (1

Montrer plus Lire moins
Établissement
Cours











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours

Infos sur le Document

Publié le
30 janvier 2022
Nombre de pages
303
Écrit en
2021/2022
Type
Examen
Contient
Inconnu

Sujets

Aperçu du contenu

,Convex Optimization

Solutions Manual




Stephen Boyd Lieven Vandenberghe




January 4, 2006

,Chapter 2

Convex sets

, Exercises


Exercises
Definition of convexity
2.1 Let C ⊆ Rn be a convex set, with x1 , . . . , xk ∈ C, and let θ1 , . . . , θk ∈ R satisfy θi ≥ 0,
θ1 + · · · + θk = 1. Show that θ1 x1 + · · · + θk xk ∈ C. (The definition of convexity is that
this holds for k = 2; you must show it for arbitrary k.) Hint. Use induction on k.
Solution. This is readily shown by induction from the definition of convex set. We illus-
trate the idea for k = 3, leaving the general case to the reader. Suppose that x 1 , x2 , x3 ∈ C,
and θ1 + θ2 + θ3 = 1 with θ1 , θ2 , θ3 ≥ 0. We will show that y = θ1 x1 + θ2 x2 + θ3 x3 ∈ C.
At least one of the θi is not equal to one; without loss of generality we can assume that
θ1 6= 1. Then we can write
y = θ1 x1 + (1 − θ1 )(µ2 x2 + µ3 x3 )
where µ2 = θ2 /(1 − θ1 ) and µ2 = θ3 /(1 − θ1 ). Note that µ2 , µ3 ≥ 0 and
θ2 + θ 3 1 − θ1
µ1 + µ 2 = = = 1.
1 − θ1 1 − θ1
Since C is convex and x2 , x3 ∈ C, we conclude that µ2 x2 + µ3 x3 ∈ C. Since this point
and x1 are in C, y ∈ C.
2.2 Show that a set is convex if and only if its intersection with any line is convex. Show that
a set is affine if and only if its intersection with any line is affine.
Solution. We prove the first part. The intersection of two convex sets is convex. There-
fore if S is a convex set, the intersection of S with a line is convex.
Conversely, suppose the intersection of S with any line is convex. Take any two distinct
points x1 and x2 ∈ S. The intersection of S with the line through x1 and x2 is convex.
Therefore convex combinations of x1 and x2 belong to the intersection, hence also to S.
2.3 Midpoint convexity. A set C is midpoint convex if whenever two points a, b are in C, the
average or midpoint (a + b)/2 is in C. Obviously a convex set is midpoint convex. It can
be proved that under mild conditions midpoint convexity implies convexity. As a simple
case, prove that if C is closed and midpoint convex, then C is convex.
Solution. We have to show that θx + (1 − θ)y ∈ C for all θ ∈ [0, 1] and x, y ∈ C. Let
θ(k) be the binary number of length k, i.e., a number of the form
θ(k) = c1 2−1 + c2 2−2 + · · · + ck 2−k
with ci ∈ {0, 1}, closest to θ. By midpoint convexity (applied k times, recursively),
θ(k) x + (1 − θ (k) )y ∈ C. Because C is closed,
lim (θ(k) x + (1 − θ (k) )y) = θx + (1 − θ)y ∈ C.
k→∞


2.4 Show that the convex hull of a set S is the intersection of all convex sets that contain S.
(The same method can be used to show that the conic, or affine, or linear hull of a set S
is the intersection of all conic sets, or affine sets, or subspaces that contain S.)
Solution. Let H be the convex hull of S and let D be the intersection of all convex sets
that contain S, i.e., \
D= {D | D convex, D ⊇ S}.
We will show that H = D by showing that H ⊆ D and D ⊆ H.
First we show that H ⊆ D. Suppose x ∈ H, i.e., x is a convex combination of some
points x1 , . . . , xn ∈ S. Now let D be any convex set such that D ⊇ S. Evidently, we have
x1 , . . . , xn ∈ D. Since D is convex, and x is a convex combination of x1 , . . . , xn , it follows
that x ∈ D. We have shown that for any convex set D that contains S, we have x ∈ D.
This means that x is in the intersection of all convex sets that contain S, i.e., x ∈ D.
Now let us show that D ⊆ H. Since H is convex (by definition) and contains S, we must
have H = D for some D in the construction of D, proving the claim.
€15,97
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
Exceldemics
1,0
(1)

Faites connaissance avec le vendeur

Seller avatar
Exceldemics Harvard University
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
4
Membre depuis
3 année
Nombre de followers
4
Documents
36
Dernière vente
1 année de cela
Exceldemics

On this page, you find all documents, bundles, and flashcards offered by Exceldemics.

1,0

1 revues

5
0
4
0
3
0
2
0
1
1

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions