Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
TEST BANK FOR Convex Optimization 1st Edition By Stephen Boyd (Solution Manual) €16,82   Ajouter au panier

Examen

TEST BANK FOR Convex Optimization 1st Edition By Stephen Boyd (Solution Manual)

 26 vues  0 fois vendu
  • Cours
  • Établissement

Exam (elaborations) TEST BANK FOR Convex Optimization 1st Edition By Stephen Boyd (Solution Manual) Convex Optimization Solutions Manual Stephen Boyd Lieven Vandenberghe January 4, 2006 Chapter 2 Convex sets Exercises Exercises De nition of convexity 2.1 Let C  Rn be a convex set, with ...

[Montrer plus]

Aperçu 4 sur 303  pages

  • 30 janvier 2022
  • 303
  • 2021/2022
  • Examen
  • Inconnu
avatar-seller
,Convex Optimization

Solutions Manual




Stephen Boyd Lieven Vandenberghe




January 4, 2006

,Chapter 2

Convex sets

, Exercises


Exercises
Definition of convexity
2.1 Let C ⊆ Rn be a convex set, with x1 , . . . , xk ∈ C, and let θ1 , . . . , θk ∈ R satisfy θi ≥ 0,
θ1 + · · · + θk = 1. Show that θ1 x1 + · · · + θk xk ∈ C. (The definition of convexity is that
this holds for k = 2; you must show it for arbitrary k.) Hint. Use induction on k.
Solution. This is readily shown by induction from the definition of convex set. We illus-
trate the idea for k = 3, leaving the general case to the reader. Suppose that x 1 , x2 , x3 ∈ C,
and θ1 + θ2 + θ3 = 1 with θ1 , θ2 , θ3 ≥ 0. We will show that y = θ1 x1 + θ2 x2 + θ3 x3 ∈ C.
At least one of the θi is not equal to one; without loss of generality we can assume that
θ1 6= 1. Then we can write
y = θ1 x1 + (1 − θ1 )(µ2 x2 + µ3 x3 )
where µ2 = θ2 /(1 − θ1 ) and µ2 = θ3 /(1 − θ1 ). Note that µ2 , µ3 ≥ 0 and
θ2 + θ 3 1 − θ1
µ1 + µ 2 = = = 1.
1 − θ1 1 − θ1
Since C is convex and x2 , x3 ∈ C, we conclude that µ2 x2 + µ3 x3 ∈ C. Since this point
and x1 are in C, y ∈ C.
2.2 Show that a set is convex if and only if its intersection with any line is convex. Show that
a set is affine if and only if its intersection with any line is affine.
Solution. We prove the first part. The intersection of two convex sets is convex. There-
fore if S is a convex set, the intersection of S with a line is convex.
Conversely, suppose the intersection of S with any line is convex. Take any two distinct
points x1 and x2 ∈ S. The intersection of S with the line through x1 and x2 is convex.
Therefore convex combinations of x1 and x2 belong to the intersection, hence also to S.
2.3 Midpoint convexity. A set C is midpoint convex if whenever two points a, b are in C, the
average or midpoint (a + b)/2 is in C. Obviously a convex set is midpoint convex. It can
be proved that under mild conditions midpoint convexity implies convexity. As a simple
case, prove that if C is closed and midpoint convex, then C is convex.
Solution. We have to show that θx + (1 − θ)y ∈ C for all θ ∈ [0, 1] and x, y ∈ C. Let
θ(k) be the binary number of length k, i.e., a number of the form
θ(k) = c1 2−1 + c2 2−2 + · · · + ck 2−k
with ci ∈ {0, 1}, closest to θ. By midpoint convexity (applied k times, recursively),
θ(k) x + (1 − θ (k) )y ∈ C. Because C is closed,
lim (θ(k) x + (1 − θ (k) )y) = θx + (1 − θ)y ∈ C.
k→∞


2.4 Show that the convex hull of a set S is the intersection of all convex sets that contain S.
(The same method can be used to show that the conic, or affine, or linear hull of a set S
is the intersection of all conic sets, or affine sets, or subspaces that contain S.)
Solution. Let H be the convex hull of S and let D be the intersection of all convex sets
that contain S, i.e., \
D= {D | D convex, D ⊇ S}.
We will show that H = D by showing that H ⊆ D and D ⊆ H.
First we show that H ⊆ D. Suppose x ∈ H, i.e., x is a convex combination of some
points x1 , . . . , xn ∈ S. Now let D be any convex set such that D ⊇ S. Evidently, we have
x1 , . . . , xn ∈ D. Since D is convex, and x is a convex combination of x1 , . . . , xn , it follows
that x ∈ D. We have shown that for any convex set D that contains S, we have x ∈ D.
This means that x is in the intersection of all convex sets that contain S, i.e., x ∈ D.
Now let us show that D ⊆ H. Since H is convex (by definition) and contains S, we must
have H = D for some D in the construction of D, proving the claim.

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur Exceldemics. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €16,82. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

78998 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!

Récemment vu par vous


€16,82
  • (0)
  Ajouter