Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

samenvatting fysica miv wiskunde: 2e orde differentiaal

Note
-
Vendu
-
Pages
2
Publié le
09-02-2022
Écrit en
2020/2021

Samenvatting van de powerpoints van dit hoofdstuk voor het vak fysica miv wiskunde









Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Infos sur le Document

Publié le
9 février 2022
Nombre de pages
2
Écrit en
2020/2021
Type
Resume

Aperçu du contenu

Fysica miv wiskunde: wiskunde – 2E ORDE DIFFERENTIAALVERGELIJKINGEN

2
d y dy
Algemene vorm: a +b + cy=f ( x)
dx 2
dx
vb: y’’+2y’ – y = x2

homogeen: gelijk aan 0 inhomogeen: niet gelijk aan nul, maar aan een functie

homogene, 2e orde, lineaire DV
y = e λx invullen in DV  (a λ 2 + b λ + c)e λx = 0
aan homogene functie voldaan als a λ 2 + b λ + c = 0 => karakteristieke vergelijking
oplossingen worden bepaald door discriminant

discriminant > 0
integraal wordt dan: y(x) = Ae λ x + Be λ x
1 2




discriminant = 0
integraal wordt dan: y(x) = (A+Bx)e λx

discriminant < 0
integraal wordt dan: y(x) = epx(C1cosqx + C2sinqx)
λ = p+qi en p-qi i2 = -1 p = -b/2a q = √−D/2a

Particuliere integraal : integraal die voldoet aan bestaansvoorwaarden (BVW)

Inhomogene 2e orde DV
d2 y dy
Algemene vorm: a 2
+b + cy=f ( x)
dx dx

Algemene integraal: y(x) = y0(x) + y*(x)
- y0(x) = algemen integraal van overeenkomstige homogene DV ay’’+by’+cy = 0
- y*(x) = willekeurige particuliere integraal van inhomogene DV

α is geen wortel van karakteristieke vergelijking: y*(x) = Qn(x)e αx
α is enkelvoudige wortel van karakteristieke vergelijking: y*(x) = xQn(x)e αx
α is dubbele wortel van karakteristieke vergelijking: y*(x) = x2Qn(x)e αx

Particuliere oplossing als f(x) = Qn(x)e αx

Vb: y’’ + 4y’ + 3y = x  Q(x) = x en α = 0
Karakteristieke vergelijking: λ 2 + 4 λ + 3 = 0 waaruit λ = -1 en λ = -3
-x -3x
Algemene integraal: y0(x) = Ae + Be
Particuliere integraal: y*(x) = A0 + A1x (gelijk aan graad Q(x))
Invullen in vergelijking opgave: 0 + 4A1 + 3(A0 + A1x) = x

4A1 + 3A0 = 0 A0 = -4/9 y*(x) = -4/9 + x/3
3A1 = 1 A1 = 1/3


2e orde differentiaalvergelijkingen - 1
€3,49
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
JAAAANA Universiteit Antwerpen
Voir profil
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
14
Membre depuis
3 année
Nombre de followers
1
Documents
0
Dernière vente
11 mois de cela

0,0

0 revues

5
0
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions