These a re
quantitave ,
continuous variable s het
yi
"
=
Xi +
Ei ,
Ei ~
NID ( 0,1 ) .
In general ,
with out comes that are restricted in some for a
given value of Xi ,
the density is
truncated at the value ✗i
In truncated the observations
as
yi only
samples
-
wa .
,
*
ob Served If y
_
> 0 =) Ei > -
Xi The
be obtained from Limited part ,
.
can only a
truncation effect is
large for small Values
of the undvlying population . Model s
where
and small large value of
the
of Xi for Xi
possible observed outcomes outccmes
truncated standard normaal
Limited to interval called
✗
are an are f
censor ed samples .
a model
for truncated data
I
' '
-2
-1 I
We can sides the situation whee the truncation
is
from below with known truncation point .
Truncated density of the e r ro r terms
It assumed that the truncah.cn point is the truncation
is we
analyse effect of on
' * '
which be achieved b P
*
always p
-
Zero , can =
xi + 5 Ei
y
=
xi + Ei
yi
_
,
0 5
in deviation the known
measuring yi from
" '
yi only ob Served if yi
> 0
,
so Ei > -
✗ i P .
truncation pcint . We Write the model as (o ) or
XÍB complete b
"
+
OEI Ei IID E- [ Ei ] 0 We CDF F
yi
= ~ =
, ,
Ei is an e r ro r term with known symmetrie
{ }
' '
P E t P TE
*
Ei Ei > xi o
if ✗ c. P
- -
=
5
and continuous density f .
The Scale
factor
5
convenant
5 is as b extracting 5 we
/ ] [ ]
' '
* P ziet Ei > xi P P xi /310 < ziet
- -
=
that the
5 PE Ei > Xi
'
1310 ]
density f of the
-
aan now a ss u m e
( n or m ali te r ) Ei is
completely known
F (t) FC '
)
.
=
- -
✗i 310
/
Flxi > Plo )
the model
We assume the data satisfies ,
'
t > P /
if Xi 0
y :*
-
but to are not do Served .
" ' "
This gives trvncated density
yi
=
yi
=
✗i P + •
Ei if i
>0
( t)
'
fi 0
if te ✗ i. Plo
-
=
*
obseved ⇐ 0
yi
not if yi
f- i ( t ) f- ( t ) Plo
'
t
=
íf > xi
-
FLXÍPIO )
so the truncated of
density Ei is
'
'
to with
proportioneel the right part
'
The
t > ✗i 1315 of the
origin at
density f
-
.
b FC 1315 )
'
scoring is Needed to
✗i get
ffiltldt =/ .
S. Veeling
ijijij ij
, Estimation likelihood Tobit model censored data
b maximum for
consistent estimates of B are obtained b Dependent variable is called censored when
ml For the norman distribution we
get the cannot tahe values below
,
response or
.
pl i ) 0 / ( / ) Is )
3
'
xi
g- i
-
=
above a certain threshold the tobit model
⑤ ( xi 310
'
)
.
/
relaties obseved outcomes zo to an
as truncated density .
yi
"
by of
'
as Observations
yi
a re assumed to be index function yi
=
×:
p + 5 Ei means
'
nvutually independent
" "
,
we
get yi
=
yi
=
xi p + • Ei if yi
> 0
log ( L) =
log ( ply , ,
. .
.
, yn ) ) =
Ê ,
109 ( Plyi ) )
yi
= o
if yi
*
Eo
and have
with Scale parameter a
log Co2 )
a a {i
log 4) log (z i t )
-12 f-
= -
know symmetrie density f- with E [ Ei] =
0 .
'
-
÷ È
( yi -
xi
'
/3 )
-
Én log ( ¢ ( xi
>
Plo ) ) In the tcbit model ,
we
usvall Choose
¢ and F- OI
f-
= =
.
The last term comes in addition to the usual
In the truncated model only
"
> o whee
OLS terms and is called the truncation yi
,
obseved whereas in the cessored model
effect .
That term is non -
linear in Band 5
it assumed that response s
integration
is
yi-ocorresponding.to
so we need numerical to sake this .
"
to are also obseved
yi
Marginat effects in trvncated modus
and that values of Xi for such
Parameters P Measure the ME E- [ ]
on
y
observations a re known .
of the explanatory variable s × in the
The tobit model can be seen as a
population .
Therefore they a re
of interest
variaties of the
probit model ,
with a re
for cut -
of -
sample predictions ,
so to estimate
discrete option ( gia ) and whose the
effects for vnabseved
y C- 0 . If we a re
option S u c c e ss is
replaced by the
interest ed in within -
sample effects ,
so in
continuous variable > 0
the trvncated population with
"
then yi .
yi > 0
,
for the nor man distribution the ME are
Graphical
illustrations
[ yil i
E- ] ( Ai Plo B
"
> o = i -
-
✗ ixi
'
)
2x ; If we would simply apply OLS on a
with Ai = E [ Ei
lyi
"
> o ] =
¢ (x : Plo ) >
>0 cersored yi ,
we get inconsistent estimators
☒ Lxi 310
/ ) '
'
as E- [ yi] =/ Xi p .
The correctie term for P lies in (a ,
i )
The ME i n the d-
and is equal for an xi .
E
0
Ò
truncated population clases to than
o
a re ze ro
[
in the untruncated .
§
is
Ratios Bj / 13h continue to have the §
interpretation of the relative effect of I, I to I I to
and ✗
Xj ✗ in on the dependent variable and
untrvncated truncated 17 Xi 0 in
"
Xi + Ei then P[ ]
yi
=
equal for and
= =
a re .
yi ,
P [ Ei to ] =
0,5 and
yi > o have Standard normal
density .
yi
< a is not possible .
S. Veeling
sij ijijij ij
Les avantages d'acheter des résumés chez Stuvia:
Qualité garantie par les avis des clients
Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.
L’achat facile et rapide
Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.
Focus sur l’essentiel
Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.
Foire aux questions
Qu'est-ce que j'obtiens en achetant ce document ?
Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.
Garantie de remboursement : comment ça marche ?
Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.
Auprès de qui est-ce que j'achète ce résumé ?
Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur SuusV. Stuvia facilite les paiements au vendeur.
Est-ce que j'aurai un abonnement?
Non, vous n'achetez ce résumé que pour €7,99. Vous n'êtes lié à rien après votre achat.