Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Summary ADS notes

Note
-
Vendu
-
Pages
24
Publié le
06-05-2022
Écrit en
2020/2021

Notes based on slides and the book for the exams and to understand the theory. Very useful for the analysis exam

Établissement
Cours










Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Livre connecté

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Livre entier ?
Non
Quels chapitres sont résumés ?
3-11, some 12
Publié le
6 mai 2022
Nombre de pages
24
Écrit en
2020/2021
Type
Resume

Sujets

Aperçu du contenu

Algorithms & Data Structures

1. Complexity Analysis
Efficiency of an algorithm, measured by 2 elements:
 Time complexity - amount of time it takes for a given algorithm to execute
 Space complexity - mount of space a given algorithm uses at most during
execution


Empirical time analysis
Analysis method for time complexity - roughly equivalent to a brute force approach
when programming or a proof by exhaustion for Reasoning and Logic: execute and
measure the time:
long startTime = System.currentTimeMillis(); // record the
starting time
/* (run the algorithm) */
long endTime = System.currentTimeMillis(); // record the ending
time
long elapsed = endTime - startTime; // calculate the
elapsed time


Problems:
 Results may differ when different hardware / compiler / OS / etc. are used
 Experiments are restricted to a limited set of inputs
 Requires a full implementation of the algorithm
 A compiler may optimize your code or require a warm up time.


Theoretical complexity analysis for time
Way to analyse the efficiency of an algorithm without having to run additional code,
don’t need to execute your algorithm to analyse it.
Primitive operations are operations that have a run time of 1:
- Assigning a value to a variable
- Performing an arithmetic operation
- Comparing two numbers (and no more than two)
- Accessing a single element of an array by index
- Calling and returning from a method


Assign a mathematical function to the algorithm that describes the running time.
T algorithm ( n )=number of primitive operations performed for an input size n

,To set up T algorithm ( n ):
1. State the size of the problem n - length of an array.
2. Simplify the program to only using primitive operations (optional).
3. Express the running time by counting operations.
! Note: when expressing the running time, we consider the worst-case of our problem
n.
! Note: a + only represents an arithmetic operation when applied to numbers.


Theoretical complexity analysis for space
Space used can go down, while time cannot. Count the number of stack frames
used.
Salgorithm ( n )=maximum amount of memory needed at any point in the algorithm for an input size n

A stack frame is added or pushed onto the stack when a method is called and is only
removed or popped off the stack when you return from the method. With recursive
method it is possible to have multiple stack frames on the stack at once.


Big O Proof
f ( n ) is O ( g ( n ) ) if f ( n ) ≤ c∗g ( n ) , c ≥ 0 , n0 ≥n



2. Asymptotic growth comparison

The following functions are from ‘best’ asymptotic growth to ’worst’:
1. Constant: f ( n )=c
2. Logarithmic: f ( n )=log ⁡(n)
3. Linear: f ( n )=n
4. Linearithmic (n-log-n): f ( n )=n log ⁡(n)
5. Quadratic: f ( n )=n2
6. Cubic: f ( n )=n3
7. Polynomials: f ( n )=n a
8. Factorial: f ( n )=n !
9. Exponential: f ( n )=e n
10. Worst ever: f ( n )=n n

, 3. Often used tricks

Gauss's sum identity:

n
n(n+1)
∑ i=1+ 2+ 3+…+n= 2
i=1


Geometric sum:

a1 ( 1−r )
m m

∑ ai=1+a+ a2 +…+ an= 1−r
, r ≠1
i=0


where:
o m is the number of terms, in this case n
o a 1 is the first term, in this case 1
o r is the constant that each term is multiplied by to get the next
term, in this case a
Particular geometric series:
n

∑ 2i =2n+1−1
i=0




4. Finding time complexity of a recursive algorithm

1. State / define the size of the input n
2. State the recurrence equation by counting operations. The exact amount of
operations shouldn’t be counted, that depends on the hardware, compiler, etc.
It is more about counting loops, etc. Specific operations can be replaced by a
constant, often called c xwhere x is a number
3. Create a form of this recurrence equation where there is no T(n) in the
equation anymore. There are 2 methods to do so:
a. Making an educated guess and then proving this (by induction)
b. Unfolding the equation and then create a final equation based on that
4. Determine the complexity in Big O notation
5. Prove the complexity in Big O notation




5. Arrays
€7,99
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
randomgirl

Faites connaissance avec le vendeur

Seller avatar
randomgirl Technische Universiteit Delft
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
0
Membre depuis
3 année
Nombre de followers
0
Documents
1
Dernière vente
-

0,0

0 revues

5
0
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions