Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Samenvatting Trillingen En Golven (YI1373) €7,99
Ajouter au panier

Resume

Samenvatting Trillingen En Golven (YI1373)

 84 vues  5 fois vendu

Alles wat gezien is in de les op campus de nayer

Aperçu 4 sur 48  pages

  • 26 mai 2022
  • 48
  • 2020/2021
  • Resume
Tous les documents sur ce sujet (4)
avatar-seller
Studymotivation
Trillingen en golven

Hoofdstuk 1: Trillingen
Hoofdstuk 2: Golven
Hoofdstuk 3: Geluid
Hoofdstuk 4: EM golven
Hoofdstuk 5: Interferentie
Hoofdstuk 6: Buiging
Hoofdstuk 7: Warmtestraling en fotonen

,Hoofdstuk 1: Trillingen
= periodieke bewegingen rondom een evenwichtstoestand
―> kan voorkomen als zaag- , blokfunctie of sinus / cosinus
Harmonische beweging: Zal ontstaan al een netto terugdrijvende kracht recht evenredig is met de negatieve waarde van de uitwijking.
= sinusoïdale of cosinusoïdale beweging
Wat zou de reden kunnen zijn waarom we focussen op de harmonische beweging?
- veel dingen worden beschreven met behulp van sinussen en cosinussen
- makkelijk te beschrijven
- gelijk welke trilling kan je beschrijven als een sinus of cosinus via Fourier analyse
(= optellen/aftrekken sinus en cosinus)
Toepassing “palen stil de grond in getrild” ―> bv in de zee, daar wordt het volledige zee leven verstoort door trillingen.
Oplossingen: onder aan de paal zit een component dat trilt, hierdoor komt de grond los en is er geen hei machine meer
nodig!




X(t) = A sin( ωt + α ) plaats
A = amplitude ―> uitrekken van de veer (harder of minder hard trekken veer)

ω = cirkelfrequentie
t = tijd
α = beginfase, waar dat bv. de sinus begint ―> moment dat je op de chronometer drukt
( ωt + α ) = fase
Afleiden van de periode:
ω t2 + α = ω t1 + α + 2π
ω t2 = ω t1 + 2π
t2 - t1 = 2π/ω
P = T = 2π/ω = periode (s) f = ω/ 2π = frequentie (Hz)


Eén cyclus van een harmonische beweging
uitgedrukt in radialen: 2π
uitgedrukt in seconden: P



Hoe verander ik de periode of frequentie van een massa-veer systeem in de praktijk?
―> Een andere massa nemen.
De snelheid v(t):
v(t) = dx/dt
= Aω cos( ωt + α )
vmax = Aω
2
De versnelling a(t):
a(t) = dv/dt

:
= - Aω sin( ωt + α )
=-ωx
2
amax = Aω

, Vb. 9.4
Gegeven: f = 262 Hz , A = 1,5 * 10 m , x(t=0) = A
Gevraagd: vmax, amax
Oplossing:
vmax = Aω = A 2π f = 0,25 m/s = 0,9 km/u
2 2
amax = Aω = 410 m/s > 40g




1.



2.



1. 1. Waar kracht is 0.
2. Waar kracht maximaal is.
Hardste terugtrekken/duwen veer.




Terugroepkracht:
= kracht uitgeoefend door de veer op de massa




x = positief, F = negatief
De vergelijking voor F(x)?
F = -k x met k = de veerconstante
x = A sin(ωt + α)
Hoe kan dit juist zijn als je weet dat x een sinusfunctie is?
―> met behulp van de assen.
2 2
F = ma = - mω x = - kx ―> ω = k/m
Energie van de harmonische beweging:
E ^
Hoe verandert deze grafiek als functie van de tijd als er wrijving is?
De groene lijn zalt als functie van de tijd in zijn geheel naar beneden
en wordt korter ―> amplitude kleiner en snelheid zal ook zakken en
korter worden omdat het systeem stil valt.


v2 >X
Kinetische energie: Ek max bij x=0
M .




=

2


Potentiële energie: Ep =
m.ro
'

2
.
x2
max bij maximale uitwijking Ep = - fFdx =f kx dx
Totale energie: E- Ekt Ep
-

, Dynamica van de harmonische beweging:
Bepaal de plaats x als functie van de tijd voor een massa bevestigd aan een veer met een
constante k.




Ieder trillend systeem, waarvoor geldt dat de netto terugdrijvende kracht recht evenredig is
met de negatieve waarde van de uitwijking voert een harmonische beweging uit!




De enkelvoudige slinger:
Ideaal systeem:
- geen wrijving
- massaloos touw
- onvervormbaar touw
- puntmassaʼs
Is dit een harmonische beweging? ( = is er een terugroepkracht? )
Ja, bij kleine hoeken. Er is nood aan een terugroepkracht = zwaartekracht ontbinden
Een slinger heeft een harmonische beweging als we m*g*sin O mogen herschrijven als
-




m*g*O, O mag niet te groot zijn (max 30 )
- -




2
a =v/R
m

2
2-
a = dv / dt = r d 0 / dt
t




De frequentie van de slinger is onafhankelijk van de massa van
het object. De frequentie is enkel afhankelijk van de lengte van
de slinger. Hoe korter de slinger hoe sneller de frequentie
r



>




Hoe groter de hoek van de max amplitude hoe groter de afwijking van de ideale amplitude P 0


Daarom is er een maximum hoek van 30 anders klopt de basis formule niet meer.


Periode
Periode van 0




-

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur Studymotivation. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €7,99. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

52510 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€7,99  5x  vendu
  • (0)
Ajouter au panier
Ajouté